Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus - DTU Orbit (28/10/2019)

Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus

Background:
The fungal genus Aspergillus is of critical importance to humankind. Species include those with industrial applications, important pathogens of humans, animals and crops, a source of potent carcinogenic contaminants of food, and an important genetic model. The genome sequences of eight aspergilli have already been explored to investigate aspects of fungal biology, raising questions about evolution and specialization within this genus.

Results:
We have generated genome sequences for ten novel, highly diverse Aspergillus species and compared these in detail to sister and more distant genera. Comparative studies of key aspects of fungal biology, including primary and secondary metabolism, stress response, biomass degradation, and signal transduction, revealed both conservation and diversity among the species. Observed genomic differences were validated with experimental studies. This revealed several highlights, such as the potential for sex in asexual species, organic acid production genes being a key feature of black aspergilli, alternative approaches for degrading plant biomass, and indications for the genetic basis of stress response. A genome-wide phylogenetic analysis demonstrated in detail the relationship of the newly genome sequenced species with other aspergilli.

Conclusions:
Many aspects of biological differences between fungal species cannot be explained by current knowledge obtained from genome sequences. The comparative genomics and experimental study, presented here, allows for the first time a genus-wide view of the biological diversity of the aspergilli and in many, but not all, cases linked genome differences to phenotype. Insights gained could be exploited for biotechnological and medical applications of fungi.

General information
Publication status: Published
Organisations: Department of Biotechnology and Biomedicine, Network Engineering of Eukaryotic Cell factories, Fungal Chemodiversity, Westerdijk Fungal Biodiversity Institute, Utrecht University, United States Department of Energy, Universidad Nacional Autonoma de Mexico, University of Athens, Centro Nacional de Pesquisa em Energia e Materiais, VTT Brasil, National Institute of Chemistry Ljubljana, University of Debrecen, Leiden University, CSIRO, University of Göttingen, Maynooth University, University of Seville, University of Natural Resources and Life Sciences, Vienna, Broad Institute, Huazhong Agricultural University, Universidad Estadual de Campinas, CNR, Demokritos National Centre for Scientific Research, Université Libre de Bruxelles, University of Nottingham, Aix-Marseille Université, Institut Pasteur de Montevideo, National Public Education Administration, Institut National de la Recherche Agronomique, King Abdulaziz University, University of Helsinki, Dutch DNA Biotech, University of Amsterdam, University of St Andrews, University of Ioannina, St. Petersburg State University, CSIC, Universidade Federal de Sao Carlos, Swedish University of Agricultural Sciences, Swedish Chemicals Agency, Technical University of Berlin, Consejo Nacional de Investigaciones Científicas y Técnicas, Concordia University, Kyungpook National University, Universite Paris-Saclay, Universidad de la Republica, Karlsruhe Institute of Technology, University of Sulaaimani, University of Ljubljana, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Stanford University, Kansas State University, BaseClear B.V., University of Wisconsin-Madison, Pacific Northwest National Laboratory, Friedrich Schiller University Jena, Universidade de Sao Paulo, University of Kansas, Imperial College London, Université Paris-Sud XI, Vienna University of Technology, Seres Therapeutics, Inc.
Corresponding author: de Vries, R. P.

Number of pages: 45
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Genome Biology (Online Edition)
Volume: 18