Compact dual-strain sensitivity polymer optical fiber grating for multi-parameter sensing

Luis Pereira, Rui Min, Tiago Paixao, Carlos Marques, Getinet Woyessa, Ole Bang, Joao Lemos Pinto, Paulo Antunes

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

In this paper, two configurations are presented for simultaneous measurement of strain and temperature by reducing the cross-section area in small regions of the fiber where the Bragg gratings were inscribed, to achieve dual sensitivity to strain and handle the cross-sensitivity to temperature of a single grating. Each configuration used a single Bragg grating inscribed in a 2-ring undoped poly (methyl methacrylate) microstructured polymer optical fiber (mPOF) with a pulsed Q-switched Nd:YAG laser system. To reduce the cross-section area, a femtosecond laser system was used to remove portions of the mPOF, creating micromachined slots in the fiber, with different lengths for each configuration. The result was the appearance of a second peak when strain is applied, with a higher strain sensitivity. The thermal, humidity and refractive index response of these gratings were analyzed, revealing a thermal sensitivity almost twice the value of a common Bragg grating inscribed in the same mPOF. The maximum root mean square errors obtained when both strain and temperature are applied in these grating devices were 52 με% and 0.675 °C, respectively. These results show that the method used to produce these devices could be a suitable and reliable option to fabricate very compact sensors to simultaneously measure strain and other parameters, such as temperature. Moreover, these devices may be used as phase-shift gratings since the position of the reflective peaks and their relative spectral separation may be modulated by applying strain to the optical fiber.
Original languageEnglish
JournalJournal of Lightwave Technology
VolumePP
Issue number99
Number of pages10
ISSN0733-8724
DOIs
Publication statusAccepted/In press - 2021

Keywords

  • Fiber gratings
  • Optical fiber sensors
  • Plastic optical fiber
  • Dual sensitivity

Fingerprint

Dive into the research topics of 'Compact dual-strain sensitivity polymer optical fiber grating for multi-parameter sensing'. Together they form a unique fingerprint.

Cite this