Communication: Analytic gradients in the random-phase approximation

Johannes Rekkedal, Sonia Coriani, Maria Francesca Iozzi, Andrew M. Teale, Trygve Helgaker, T. B. Pedersen

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

The relationship between the random-phase-approximation (RPA) correlation energy and the continuous algebraic Riccati equation is examined and the importance of a stabilizing solution is emphasized. The criterion to distinguish this from non-stabilizing solutions can be used to ensure that physical, smooth potential energy surfaces are obtained. An implementation of analytic RPA molecular gradients is presented using the Lagrangian technique. Illustrative calculations indicate that RPA with Hartree-Fock reference orbitals delivers an accuracy similar to that of second-order Møller-Plesset perturbation theory.
Original languageEnglish
Article number081101
JournalJournal of Chemical Physics
Volume139
Issue number8
ISSN0021-9606
DOIs
Publication statusPublished - 2013
Externally publishedYes

Cite this

Rekkedal, J., Coriani, S., Iozzi, M. F., Teale, A. M., Helgaker, T., & Pedersen, T. B. (2013). Communication: Analytic gradients in the random-phase approximation. Journal of Chemical Physics, 139(8), [081101]. https://doi.org/10.1063/1.4819399