Commitment and dispatch of heat and power units via affinely adjustable robust optimization

Commitment and dispatch of heat and power units via affinely adjustable robust optimization

The joint management of heat and power systems is believed to be key to the integration of renewables into energy systems with a large penetration of district heating. Determining the day-ahead unit commitment and production schedules for these systems is an optimization problem subject to uncertainty stemming from the unpredictability of demand and prices for heat and electricity. Furthermore, owing to the dynamic features of production and heat storage units as well as to the length and granularity of the optimization horizon (e.g., one whole day with hourly resolution), this problem is in essence a multi-stage one. We propose a formulation based on robust optimization where recourse decisions are approximated as linear or piecewise-linear functions of the uncertain parameters. This approach allows for a rigorous modeling of the uncertainty in multi-stage decision-making without compromising computational tractability. We perform an extensive numerical study based on data from the Copenhagen area in Denmark, which highlights important features of the proposed model. Firstly, we illustrate commitment and dispatch choices that increase conservativeness in the robust optimization approach. Secondly, we appraise the gain obtained by switching from linear to piecewise-linear decision rules within robust optimization. Furthermore, we give directions for selecting the parameters defining the uncertainty set (size, budget) and assess the resulting trade-off between average profit and conservativeness of the solution. Finally, we perform a thorough comparison with competing models based on deterministic optimization and stochastic programming. (C) 2016 Elsevier Ltd. All rights reserved.

General information
Publication status: Published
Organisations: Department of Applied Mathematics and Computer Science, Dynamical Systems
Contributors: Zugno, M., Morales González, J. M., Madsen, H.
Number of pages: 11
Pages: 191-201
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Computers & Operations Research
Volume: 75
ISSN (Print): 0305-0548
Ratings:
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.77 SJR 2.299 SNIP 2.198
Web of Science (2016): Impact factor 2.6
Web of Science (2016): Indexed yes
Original language: English
Keywords: OR in energy, Combined heat and power, Energy market, Robust optimization, Decision rules
Electronic versions:
HKKR_1507.05811.pdf
DOIs:
10.1016/j.cor.2016.06.002
Source: FindIt
Source-ID: 2305491882
Research output: Contribution to journal › Journal article – Annual report year: 2016 › Research › peer-review