Combined UV treatment and ozonation for the removal of by-product precursors in swimming pool water

Both UV treatment and ozonation are used to reduce different types of disinfection by-products (DBPs) in swimming pools. UV treatment is the most common approach, as it is particularly efficient at removing combined chlorine. However, the UV treatment of pool water increases chlorine reactivity and the formation of chloro-organic DBPs such as trihalomethanes. Based on the similar selective reactivity of ozone and chlorine, we hypothesised that the created reactivity to chlorine, as a result of the UV treatment of dissolved organic matter in swimming pool water, might also be expressed as increased reactivity to ozone. Moreover, ozonation might saturate the chlorine reactivity created by UV treatment and mitigate increased formation of a range of volatile DBPs. We found that UV treatment makes pool water highly reactive to ozone. The subsequent reactivity to chlorine decreases with increasing ozone dosage prior to contact with chlorine. Furthermore, ozone had a half-life of 5 min in non-UV treated pool water whereas complete consumption of ozone was obtained in less than 2 min in UV treated pool water. The ozonation of UV-treated pool water induced the formation of some DBPs that are not commonly reported in this medium, in particular trichloronitromethane, which is noteworthy for its genotoxicity, though this issue was removed by UV treatment when repeated combined UV/ozone treatment interchanging with chlorination was conducted over a 24-h period. The discovered reaction could form the basis for a new treatment method for swimming pools.

General information
Publication status: Published
Organisations: Department of Environmental Engineering, Water Technologies
Contributors: Cheema, W. A., Kaarsholm, K. M. S., Andersen, H. R.
Pages: 141-149
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Water Research
Volume: 110
ISSN (Print): 0043-1354
Ratings:
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 7.55 SJR 2.601 SNIP 2.388
Web of Science (2017): Impact factor 7.051
Web of Science (2017): Indexed yes
Original language: English
Keywords: Ozone, UV, Swimming pool, Trihalomethane, Disinfection by-products
Electronic versions:
1_s2.0_S0043135416309423_main_1_.pdf. Embargo ended: 19/12/2018
DOIs:
10.1016/j.watres.2016.12.008
Source: PublicationPreSubmission
Source-ID: 127622078
Research output: Contribution to journal › Journal article – Annual report year: 2017 › Research › peer-review