
Combined Life Cycle Assessment and Life Cycle Costing in the Eco-Care-Matrix: A case study on the performance of a modernized manufacturing system for glass containers

The objects of Life Cycle Assessment (LCA) case studies are often individual components or individual products. Studies focusing on larger industrial manufacturing systems are relatively rare. The purpose of this case study was to assess environmental and cost-related performance of an updated complex manufacturing system for glass containers (i.e. jars, glass bottles, etc.) compared to the predecessor manufacturing system. The objective was also to identify the most relevant drivers for the environmental and the cost profile of the system solution in application context by the means of Life Cycle Assessment, as well as Life Cycle Costing (LCC). The results were then to be displayed in an Eco-Care-Matrix (ECM) in order to quantitatively visualize the improvements when comparing the updated manufacturing system to the previous one and they were to be discussed in terms of (i) ecodesign levers, (ii) efficiency of the LCA process and (iii) their relevance for the speed and cost of the decision-making process. The LCA results of the production stage of the optimized components showed that the largest contributors to the potential environmental impact of the manufacturing system are the motors due to their material composition, number and mass. The use stage was subsequently recognized as the dominant life stage with Global Warming Potential (GWP) as the leading indicator, due to the long service life (20 years) and the corresponding energy consumption. The analysis of a produced glass bottle's GWP showed that it was reduced by about 40% through optimizing the production system. The LCC showed that the modernization pays off after about five years of service life and that the decision for making an Investment should not only be based on the required capital expenditure (CAPEX). Rather, operation expenditure (OPEX) should also be considered in order to reflect the savings gained from lower operating costs, which compensate relatively quickly any higher initial expenditure or initial investment. In order to apply Life Cycle Assessment on larger-scale industrial systems, smart and pragmatic LCA modeling approaches have to be developed and adopted, balancing accuracy of results against efficiency in achieving them. An adequate ecological-and-economic assessment tool would reduce the time and effort when making decisions in this context.

General information
Publication status: Published
Organisations: Department of Management Engineering, Quantitative Sustainability Assessment, Dresden University of Technology
Contributors: Auer, J., Bey, N., Schäfer, J.
Pages: 99-109
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Journal of Cleaner Production
Volume: 141
ISSN (Print): 0959-6526
Ratings:
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 5.79 SJR 1.467 SNIP 2.339
Web of Science (2017): Impact factor 5.651
Web of Science (2017): Indexed yes
Original language: English
Keywords: Life Cycle Assessment (LCA), Life Cycle Costing (LCC), Manufacturing system, Individual section machine (IS machine), Eco-Care-Matrix (ECM)
Electronic versions:
Auer_et_al._2016_Word_with.DOI.pdf. Embargo ended: 02/09/2018
DOIs:
10.1016/j.jclepro.2016.08.096
Source: FindIt
Source ID: 2343110669
Research output: Contribution to journal › Journal article – Annual report year: 2016 › Research › peer-review