Color effects from scattering on random surface structures in dielectrics.

We show that cheap large area color filters, based on surface scattering, can be fabricated in dielectric materials by replication of random structures in silicon. The specular transmittance of three different types of structures, corresponding to three different colors, have been characterized. The angle resolved scattering has been measured and compared to predictions based on the measured surface topography and by the use of non-paraxial scalar diffraction theory. From this it is shown that the color of the transmitted light can be predicted from the topography of the randomly textured surfaces.

General information
Publication status: Published
Organisations: Department of Photonics Engineering, Structured Electromagnetic Materials, Department of Micro- and Nanotechnology
Contributors: Clausen, J., Christiansen, A. B., Garnæs, J., Mortensen, N. A., Kristensen, A.
Pages: 4376-4381
Publication date: 2012
Peer-reviewed: Yes

Publication information
Journal: Optics Express
Volume: 20
Issue number: 4
ISSN (Print): 1094-4087
Ratings:
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 3.85 SJR 2.562 SNIP 2.089
Web of Science (2012): Impact factor 3.546
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
Original language: English
Electronic versions:
0EAD6d01.pdf
DOIs:
10.1364/OE.20.004376

Bibliographical note
This paper was published in Optics Express and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-20-4-4376. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.
Source: dtu
Source ID: n::oai:DTIC-ART:pubmed/358346111::15308
Research output: Contribution to journal › Journal article – Annual report year: 2012 › Research › peer-review