Colloidal Flower-Shaped Iron Oxide Nanoparticles: Synthesis Strategies and Coatings

Colloidal Flower-Shaped Iron Oxide Nanoparticles: Synthesis Strategies and Coatings

The assembly of magnetic cores into regular structures may notably influence the properties displayed by a magnetic colloid. In this work, key synthesis parameters driving the self-assembly process capable of organizing colloidal magnetic cores into highly regular and reproducible multi-core nanoparticles are determined. In addition, a self-consistent picture that explains the collective magnetic properties exhibited by these complex assemblies is achieved through structural, colloidal, and magnetic means. For this purpose, different strategies to obtain flower-shaped iron oxide assemblies in the size range 25–100 nm are examined. The routes are based on the partial oxidation of Fe(OH)$_2$, polyol-mediated synthesis or the reduction of iron acetylacetonate. The nanoparticles are functionalized either with dextran, citric acid, or alternatively embedded in polystyrene and their long-term stability is assessed. The core size is measured, calculated, and modeled using both structural and magnetic means while the Debye model and multi-core extended model are used to study interparticle interactions. This is the first step toward standardized protocols of synthesis and characterization of flower-shaped nanoparticles.

General information

Publication status: Published
Organisations: Department of Physics, Neutrons and X-rays for Materials Physics, Department of Micro- and Nanotechnology, Magnetic Systems, Complutense University, micromod Partikeltechnologie GmbH, nanoPET Pharma GmbH, SP Technical Research Institute of Sweden, UCL Healthcare Biomagnetics Laboratory, Physikalisch-Technische Bundesanstalt, Chalmers University of Technology, University of Cantabria, Technical University of Braunschweig, Uppsala University

Number of pages: 12
Publication date: 2017
Peer-reviewed: Yes

Publication Information

Journal: Particle & Particle Systems Characterization
Volume: 34
Issue number: 7
ISSN (Print): 0934-0866
Ratings:
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 4.38 SJR 1.656 SNIP 0.871
Web of Science (2017): Impact factor 4.384
Web of Science (2017): Indexed yes
Original language: English
Electronic versions:
Untitled.pdf
DOIs:
10.1002/ppsc.201700094
Source: PublicationPreSubmission
Source ID: 132236264
Research output: Contribution to journal › Journal article – Annual report year: 2017 › Research › peer-review