Coherent Motion Reveals Non‐Ergodic Nature of Internal Conversion between Excited States

Thomas Scheby Kuhlman, Theis I. Sølling, Klaus Braagaard Møller

Research output: Contribution to journalJournal articleResearchpeer-review


We found that specific nuclear motion along low‐frequency modes is effective in coupling electronic states and that this motion prevail in some small molecules. Thus, in direct contradiction to what is expected based on the standard models, the internal conversion process can proceed faster for smaller molecules. Specifically, we focus on the S2→S1 internal conversion in cyclobutanone, cyclopentanone, and cyclohexanone. By means of time‐resolved mass spectrometry and photoelectron spectroscopy the relative rate of this transition is determined to be 13:2:1. Remarkably, we observe coherent nuclear motion on the S2 surface in a ring‐puckering mode and motion along this mode in combination with symmetry considerations allow for a consistent explanation of the observed relative time‐scales not afforded by only considering the density of vibrational states or other aspects of the standard models.
Original languageEnglish
Issue number3
Pages (from-to)820-827
Publication statusPublished - 2012


Dive into the research topics of 'Coherent Motion Reveals Non‐Ergodic Nature of Internal Conversion between Excited States'. Together they form a unique fingerprint.

Cite this