Co-estimation of geomagnetic field and in-orbit fluxgate magnetometer calibration parameters

Patrick Alken*, Nils Olsen, Christopher C. Finlay

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

91 Downloads (Pure)


For the past 20 years, state of the art geomagnetic core field models have relied heavily on magnetic measurements made from space-based instrumentation. These models have revealed rapid global magnetic field variations on sub-decadal timescales originating in Earth’s core. With the end of the CHAMP mission in 2010 and the launch of Swarm in late 2013, there has been a 3-year gap in high-quality satellite measurements of the geomagnetic field. Geomagnetic field models have therefore relied on ground observatory data to fill in this gap period. However, ground observatories are unable to provide a truly global picture of the core field and its temporal changes. Many satellites in operation carry vector fluxgate “platform” magnetometers for attitude control, which can offer an alternative to relying on ground observatory measurements during the gap period. However, these instruments need to be carefully calibrated in order to provide meaningful information on Earth’s core field. Some previous studies attempted to calibrate such instruments with a priori geomagnetic field models. This approach has several disadvantages: (1) errors in the model will introduce errors in the calibration parameters, and (2) relying on an a priori model may not be feasible in the post-Swarm era. In this paper, we develop a novel approach to build a time-dependent geomagnetic field model from platform magnetometer data, by co-estimating their calibration parameters with the internal field parameters. This method does not require an a priori geomagnetic field model, but does require a dataset of previously calibrated data. We use CHAMP, Swarm, and ground observatory measurements to supply this dataset, and incorporate platform magnetic measurements from DMSP and Cryosat-2 during the gap years. We find that the calibration parameters of DMSP and Cryosat-2 can be reliably estimated, and these missions provide meaningful information on rapid core field variations during the gap period.
Original languageEnglish
Article number49
JournalEarth, Planets and Space
Issue number1
Number of pages32
Publication statusPublished - 2020

Bibliographical note

Copyright: The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit ses/by/4.0/.


  • Geomagnetism
  • Core field modeling
  • Secular variation
  • Secular acceleration
  • Fluxgate calibration
  • Inverse theory


Dive into the research topics of 'Co-estimation of geomagnetic field and in-orbit fluxgate magnetometer calibration parameters'. Together they form a unique fingerprint.

Cite this