Co-estimating geomagnetic field and calibration parameters: modeling Earth’s magnetic field with platform magnetometer data

Clemens Kloss*, Christopher C. Finlay, Nils Olsen

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

17 Downloads (Pure)

Abstract

Models of the geomagnetic field rely on magnetic data of high spatial and temporal resolution to give an accurate picture of the Earth’s internal magnetic field and its time-dependence. The magnetic data from low-Earth orbit satellites of dedicated magnetic survey missions such as CHAMP and Swarm play a key role in the construction of such models. Unfortunately, there are no magnetic data available from such satellites after the end of the CHAMP mission in 2010 and before the launch of the Swarm mission in late 2013. This limits our ability to recover signals on timescales of 3 years and less during this gap period. The magnetic data from platform magnetometers carried by satellites for navigational purposes may help address this data gap provided that they are carefully calibrated. Earlier studies have demonstrated that platform magnetometer data can be calibrated using a fixed geomagnetic field model as reference. However, this approach can lead to biased calibration parameters. An alternative approach has been developed in the form of a co-estimation scheme which consists of simultaneously estimating both the calibration parameters and a model of the internal part of the geomagnetic field. Here, we go further and develop a scheme, based on the CHAOS field modeling framework, that involves co-estimation of both internal and external geomagnetic field models along with calibration parameters of platform magnetometer data. Using our implementation, we are able to derive a geomagnetic field model spanning 2008 to 2018 with satellite magnetic data from CHAMP, Swarm, secular variation data from ground observatories, and platform magnetometer data from CryoSat-2 and the GRACE satellite pair. Through a number of experiments, we explore correlations between the estimates of the geomagnetic field and the calibration parameters, and suggest how these may be avoided. We find evidence that platform magnetometer data provide additional information on the secular acceleration, especially in the Pacific during the gap between CHAMP and Swarm. This study adds to the evidence that it is beneficial to use platform magnetometer data in geomagnetic field modeling.[Figure not available: see fulltext.].
Original languageEnglish
Article number23
JournalEarth, Planets and Space
Volume73
Issue number1
Number of pages21
ISSN1343-8832
DOIs
Publication statusPublished - 2021

Bibliographical note

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licen ses/by/4.0/.

Keywords

  • Geomagnetism
  • Core field modeling
  • Inverse theory
  • Secular acceleration
  • Secular variation

Fingerprint Dive into the research topics of 'Co-estimating geomagnetic field and calibration parameters: modeling Earth’s magnetic field with platform magnetometer data'. Together they form a unique fingerprint.

Cite this