TY - JOUR
T1 - CMOS-compatible high-speed endless automatic polarization controller
AU - Wang, Weiqin
AU - Zhou, Ziwen
AU - Zeng, Yifan
AU - Liu, Jingze
AU - Yao, Gengqi
AU - Wu, Hao
AU - Ding, Yunhong
AU - Zhou, Siyan
AU - Yan, Siqi
AU - Tang, Ming
N1 - Publisher Copyright:
© 2024 Author(s).
PY - 2024/6/1
Y1 - 2024/6/1
N2 - Automatic polarization controllers find broad applications in various fields, including optical communication, quantum optics, optical sensing, and biomedicine. Currently, the predominant integrated automatic polarization controllers employ either lithium niobate or silicon platforms. Devices based on lithium niobate platforms exhibit excellent performance; however, their fabrication complexity hinders widespread commercial deployment. In contrast, silicon-based integrated automatic polarization controllers benefit from complementary metal-oxide-semiconductor compatibility and reduced fabrication costs. Nevertheless, these silicon automatic polarization controllers suffer from low tracking speeds, peaking at merely 1.256 krad/s. In this study, we demonstrated a silicon high-speed automatic polarization controller, incorporating innovative thermal tuning units combined with a sophisticated control algorithm. The response time of these thermal tuning units has been markedly decreased to 3.2 µs. In addition, we have implemented a novel automatic polarization control algorithm, utilizing gradient descent techniques, on a field-programmable gate array control board. The synergy of the rapid thermal tuning unit and the advanced control algorithm has enabled us to attain an unprecedented polarization control speed of up to 20 krad/s, with this rate being solely limited by the capabilities of our characterization equipment. To our knowledge, this speed is the fastest yet reported for a silicon-based integrated automatic polarization control chip. The proposed device represents a significant breakthrough in the field of silicon-based automatic polarization controllers, paving the way for the future integration of additional polarization management devices. Such an advancement would mark a substantial leap in the realm of integrated photonics, bridging the gap between performance efficiency, cost-effectiveness, and technological integration.
AB - Automatic polarization controllers find broad applications in various fields, including optical communication, quantum optics, optical sensing, and biomedicine. Currently, the predominant integrated automatic polarization controllers employ either lithium niobate or silicon platforms. Devices based on lithium niobate platforms exhibit excellent performance; however, their fabrication complexity hinders widespread commercial deployment. In contrast, silicon-based integrated automatic polarization controllers benefit from complementary metal-oxide-semiconductor compatibility and reduced fabrication costs. Nevertheless, these silicon automatic polarization controllers suffer from low tracking speeds, peaking at merely 1.256 krad/s. In this study, we demonstrated a silicon high-speed automatic polarization controller, incorporating innovative thermal tuning units combined with a sophisticated control algorithm. The response time of these thermal tuning units has been markedly decreased to 3.2 µs. In addition, we have implemented a novel automatic polarization control algorithm, utilizing gradient descent techniques, on a field-programmable gate array control board. The synergy of the rapid thermal tuning unit and the advanced control algorithm has enabled us to attain an unprecedented polarization control speed of up to 20 krad/s, with this rate being solely limited by the capabilities of our characterization equipment. To our knowledge, this speed is the fastest yet reported for a silicon-based integrated automatic polarization control chip. The proposed device represents a significant breakthrough in the field of silicon-based automatic polarization controllers, paving the way for the future integration of additional polarization management devices. Such an advancement would mark a substantial leap in the realm of integrated photonics, bridging the gap between performance efficiency, cost-effectiveness, and technological integration.
U2 - 10.1063/5.0198227
DO - 10.1063/5.0198227
M3 - Journal article
AN - SCOPUS:85197406496
SN - 2378-0967
VL - 9
JO - APL Photonics
JF - APL Photonics
IS - 6
M1 - 066116
ER -