Microalgae, particularly those from the lineage Dinoflagellata, are very well-known for their ability to produce phycotoxins that may accumulate in the marine food chain and eventually cause poisoning in humans. This includes toxins accumulating in shellfish, such as saxitoxin, okadaic acid, yessotoxins, azaspiracids, brevetoxins, and pinnatoxins. Other toxins, such as ciguatoxins and maitotoxins, accumulate in fish, where, as is the case for the latter compounds, they can be metabolized to even more toxic metabolites. On the other hand, much less is known about the chemical nature of compounds that are toxic to fish, the so-called ichthyotoxins. Despite numerous reports of algal blooms causing massive fish kills worldwide, only a few types of compounds, such as the karlotoxins, have been proven to be true ichthyotoxins. This review will highlight marine microalgae as the source of some of the most complex natural compounds known to mankind, with chemical structures that show no resemblance to what has been characterized from plants, fungi, or bacteria. In addition, it will summarize algal species known to be related to fish-killing blooms, but from which ichthyotoxins are yet to be characterized.

General information
Publication status: Published
Organisations: Department of Systems Biology, Metabolomics Platform, University of Copenhagen
Number of pages: 12
Pages: 662-673
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Journal of Natural Products
Volume: 79
Issue number: 3
ISSN (Print): 0163-3864
Ratings:
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.41 SJR 1.202 SNIP 1.448
Web of Science (2016): Impact factor 3.281
Web of Science (2016): Indexed yes
Original language: English
DOIs:
10.1021/acs.jnatprod.5b01066
Source: FindIt
Source ID: 2292409022
Research output: Contribution to journal › Review – Annual report year: 2016 › Research › peer-review