Chemical and molecular characterization of Phomopsis and Cytospora-like endophytes from different host plants in Brazil

Lucas M. Abreu, Sarah S. Costa, Ludwig H. Pfenning, Jacqueline A. Takahashi, Thomas Ostenfeld Larsen, Birgitte Andersen

    Research output: Contribution to journalJournal articleResearchpeer-review


    Phomopsis and related taxa comprise important endophytic and plant pathogenic species, and are known for the production of a diverse array of secondary metabolites. Species concepts within this group based on morphological characters and assumed host specificity do not reflect phylogenetic affinities. Additional phenotypic characters, such as profiles of secondary metabolites, are needed for practical species recognition. We investigated 36 strains of Phomopsis spp. and Cytospora-like fungi, obtained as endophytes of different host plants in Brazil, using metabolite profiling based on HPLC–UV/liquid chromatography –mass spectrometry (LC–MS) combined with cluster analysis of the results. Strains were also subjected to phylogenetic analyses based on internal transcribed spacer (ITS) rDNA. Six chemotypes were identified. Chemotypes 1–5 contained Phomopsis strains, while Cytospora-like strains formed the chemotype 6. Strains of chemotype 1 typically produced alternariols, altenusin, altenuene, cytosporones, and dothiorelones. Alternariol and seven unknown compounds were consistently produced by strains of chemotype 2. Members of chemotypes 3–5 produced poor metabolite profiles containing few chemical markers. Cytospora-like endophytes (chemotype 6) produced a characteristic set of metabolites including cytosporones and dothiorelones. Bayesian and Maximum Parsimony (MP) trees classified strains of each chemotype into single phylogenetic lineages or closely related groups. Strains of chemotypes 1 and 2 formed a monophyletic group along with Diaporthe neotheicola. The remaining Phomopsis strains formed monophyletic (chemotype 4) or polyphyletic (chemotypes 3 and 5) lineages inside a large and well supported clade. Cytospora-like strains formed a monophyletic lineage located at an intermediary position between Diaporthe/Phomopsis and Valsa/Cytospora clades. The combined results show that the production of secondary metabolites by Phomopsis and related Diaporthales may be species-specific, giving support to the use of metabolite profiling and chemical classification for phenotypic recognition and delimitation of species.
    Original languageEnglish
    JournalFungal Biology
    Issue number2
    Pages (from-to)249-260
    Publication statusPublished - 2012


    Dive into the research topics of 'Chemical and molecular characterization of Phomopsis and Cytospora-like endophytes from different host plants in Brazil'. Together they form a unique fingerprint.

    Cite this