Cheaters shape the evolution of phenotypic heterogeneity in Bacillus subtilis biofilms

Marivic Martin, Anna Dragoš, Simon B. Otto, Daniel Schäfer, Susanne Brix, Gergely Maróti, Ákos T. Kovács*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

19 Downloads (Pure)


Biofilms are closely packed cells held and shielded by extracellular matrix composed of structural proteins and exopolysaccharides (EPS). As matrix components are costly to produce and shared within the population, EPS deficient cells can act as cheaters by gaining benefits from the cooperative nature of EPS producers. Remarkably, genetically programmed EPS producers can also exhibit phenotypic heterogeneity at single-cell level. Previous studies have shown that spatial structure of biofilms limits the spread of cheaters, but the long-term influence of cheating on biofilm evolution is not well understood. Here, we examine the influence of EPS nonproducers on evolution of matrix production within the populations of EPS producers in a model biofilm-forming bacterium, Bacillus subtilis. We discovered that general adaptation to biofilm lifestyle leads to an increase in phenotypical heterogeneity of eps expression. However, prolonged exposure to EPS-deficient cheaters may result in different adaptive strategy, where eps expression increases uniformly within the population. We propose a molecular mechanism behind such adaptive strategy and demonstrate how it can benefit the EPS producers in the presence of cheaters. This study provides additional insights on how biofilms adapt and respond to stress caused by exploitation in long-term scenario.
Original languageEnglish
JournalISME Journal
Pages (from-to)2302-2312
Number of pages11
Publication statusPublished - 2020

Fingerprint Dive into the research topics of 'Cheaters shape the evolution of phenotypic heterogeneity in Bacillus subtilis biofilms'. Together they form a unique fingerprint.

Cite this