TY - JOUR
T1 - Characterizing the Aging Process of the Human Eye: Tear Evaporation, Fluid Dynamics, Blood Flow, and Metabolism-Based Comparative Study
AU - Ashiqur Rahman, Md
AU - Rabbani, Mamun
AU - Hasan Maruf, Md
AU - Islam, Aminul
AU - S. M. Shihavuddin, A.
PY - 2022
Y1 - 2022
N2 - Eye temperature and intraocular pressure are two measurable parameters that can be monitored as a health index with aging. Deviations from the normal range of intraocular pressure and temperature lead to the formation of many diseases. This study has been carried out to evaluate the relations between the physiological and anatomical changes of the eye with aging using mathematical modeling. 2D computer-aided design of the human eye has been developed for two major groups: 21 to 30 years and 41 to 50 years. The computer simulation has been carried out to determine the effects of physiological changes of tear evaporation, fluid dynamics, blood flow, and metabolism of eye tissues with aging. The simulation has been carried out in the standing and the supine position of a human body. The rate of temperature change is – 0.0075 K per year in the standing position and – 0.007 K per year in the supine position because of the modeled anatomical and physiological effects. All the three simulation parameters of this study, the temperature of the human eye, the intraocular pressure, and the aqueous humor flow velocity, have been compared with the recent practical and simulation-based experiments to validate our results.
AB - Eye temperature and intraocular pressure are two measurable parameters that can be monitored as a health index with aging. Deviations from the normal range of intraocular pressure and temperature lead to the formation of many diseases. This study has been carried out to evaluate the relations between the physiological and anatomical changes of the eye with aging using mathematical modeling. 2D computer-aided design of the human eye has been developed for two major groups: 21 to 30 years and 41 to 50 years. The computer simulation has been carried out to determine the effects of physiological changes of tear evaporation, fluid dynamics, blood flow, and metabolism of eye tissues with aging. The simulation has been carried out in the standing and the supine position of a human body. The rate of temperature change is – 0.0075 K per year in the standing position and – 0.007 K per year in the supine position because of the modeled anatomical and physiological effects. All the three simulation parameters of this study, the temperature of the human eye, the intraocular pressure, and the aqueous humor flow velocity, have been compared with the recent practical and simulation-based experiments to validate our results.
U2 - 10.1155/2022/2805402
DO - 10.1155/2022/2805402
M3 - Journal article
C2 - 35372570
SN - 1110-7243
VL - 2022
JO - BioMed Research International
JF - BioMed Research International
M1 - 2805402
ER -