TY - JOUR
T1 - Characterization of sodium stibogluconate by online liquid separation cell technology monitored by ICPMS and ESMS and computational chemistry
AU - Hansen, Helle Rusz
AU - Hansen, Claus
AU - Kepp, Kasper Planeta
AU - Hansen, Steen Honore
AU - Sturup, Stefan
AU - Garnmelgaard, Bente
PY - 2008
Y1 - 2008
N2 - High-performance liquid chromatography (HPLC), mass spectrometry (MS), and computational chemistry has been applied to resolve the composition and structure of the Sb species present in dilutions of Pentostam, a first-line treatment drug against Leishmania parasites. Using HPLC-inductively coupled plasma-MS and electrospray-MS, it was shown that the original drug consists of large Sb(V)-glyconate complexes of polymeric nature that degrade upon dilution. In dilution solution, the drug is a mixture of noncomplexed Sb(V), large polymeric complexes as well as several low molecular mass Sb(V)-glyconate complexes of various stoichiometry (1:1, 1:2, 1:3, 2:2, 2:3, 2:4, 3:3, 3:4). The 1:1 complex became the most abundant low molecular mass Sb(V) complex with dilution time. A novel mixed-mode chromatographic system was applied in order to separate complexes of various stoichiometry and isomers. Density functional theory was used to study the structure of the 1:1 Sb-gluconate complex with three or four solvent molecules bound. By computing the structures and the free energies of the various possible isomers in aqueous solvation models, the most likely structures of the species were deduced. Importantly, 6-coordination is always preferred over 5-coordination, and the species commonly adopt conformations involving tris-coordination of deprotonated hydroxyl groups from gluconate.
AB - High-performance liquid chromatography (HPLC), mass spectrometry (MS), and computational chemistry has been applied to resolve the composition and structure of the Sb species present in dilutions of Pentostam, a first-line treatment drug against Leishmania parasites. Using HPLC-inductively coupled plasma-MS and electrospray-MS, it was shown that the original drug consists of large Sb(V)-glyconate complexes of polymeric nature that degrade upon dilution. In dilution solution, the drug is a mixture of noncomplexed Sb(V), large polymeric complexes as well as several low molecular mass Sb(V)-glyconate complexes of various stoichiometry (1:1, 1:2, 1:3, 2:2, 2:3, 2:4, 3:3, 3:4). The 1:1 complex became the most abundant low molecular mass Sb(V) complex with dilution time. A novel mixed-mode chromatographic system was applied in order to separate complexes of various stoichiometry and isomers. Density functional theory was used to study the structure of the 1:1 Sb-gluconate complex with three or four solvent molecules bound. By computing the structures and the free energies of the various possible isomers in aqueous solvation models, the most likely structures of the species were deduced. Importantly, 6-coordination is always preferred over 5-coordination, and the species commonly adopt conformations involving tris-coordination of deprotonated hydroxyl groups from gluconate.
U2 - 10.1021/ac800677u
DO - 10.1021/ac800677u
M3 - Journal article
C2 - 18553944
SN - 0003-2700
VL - 80
SP - 5993
EP - 6000
JO - Analytical Chemistry
JF - Analytical Chemistry
IS - 15
ER -