TY - JOUR
T1 - Characterization and Identification of the most Refractory Nitrogen Compounds in Hydroprocessed Vacuum Gas Oil
AU - Wiwel, Peter
AU - Hinnemann, Berit
AU - Hidalgo-Vivas, Angelica
AU - Zeuthen, Per
AU - Petersen, Bent O.
AU - Duus, Jens Øllgaard
PY - 2010
Y1 - 2010
N2 - There is currently a growing need to hydroprocess heavier and tougher crude oils with increased nitrogen content. Therefore, hydrodenitrogenation (HDN) has become a critical hydroprocessing reaction, making it essential to gain insight into which nitrogen-containing compounds are the most difficult to treat. In the present article, we describe the identification of nitrogen compounds in severely pretreated feed for hydrocracking (HC). The nitrogen compounds in the N-slip to the hydrocracker are isolated and concentrated on solid-phase extraction (SPE) columns and identified by gas chromatography mass spectrometry (GC-MS), gas chromatography with atomic emission detection (GC-AED), and nuclear magnetic resonance (NMR) spectroscopy. Density functional theory (DFT) calculations support the structural identification and are further used to investigate the reactivity. We find that the most refractory organic nitrogen compounds in the N-slip belong to the family of 4,8,9,10-tetrahydrocyclohepta[def]carbazoles. These molecules are slightly more basic than other carbazoles and thus are likely to have an impact on the performance of the downstream catalysts; however, their very low reactivities make them extremely difficult to remove under normal hydrotreating conditions.
AB - There is currently a growing need to hydroprocess heavier and tougher crude oils with increased nitrogen content. Therefore, hydrodenitrogenation (HDN) has become a critical hydroprocessing reaction, making it essential to gain insight into which nitrogen-containing compounds are the most difficult to treat. In the present article, we describe the identification of nitrogen compounds in severely pretreated feed for hydrocracking (HC). The nitrogen compounds in the N-slip to the hydrocracker are isolated and concentrated on solid-phase extraction (SPE) columns and identified by gas chromatography mass spectrometry (GC-MS), gas chromatography with atomic emission detection (GC-AED), and nuclear magnetic resonance (NMR) spectroscopy. Density functional theory (DFT) calculations support the structural identification and are further used to investigate the reactivity. We find that the most refractory organic nitrogen compounds in the N-slip belong to the family of 4,8,9,10-tetrahydrocyclohepta[def]carbazoles. These molecules are slightly more basic than other carbazoles and thus are likely to have an impact on the performance of the downstream catalysts; however, their very low reactivities make them extremely difficult to remove under normal hydrotreating conditions.
U2 - 10.1021/ie901473x
DO - 10.1021/ie901473x
M3 - Journal article
VL - 49
SP - 3184
EP - 3193
JO - Industrial & Engineering Chemistry Research
JF - Industrial & Engineering Chemistry Research
SN - 0888-5885
IS - 7
ER -