TY - JOUR
T1 - Characterisation of gluten-degrading prolyl endoprotease from Thermococcus kodakarensis
AU - Shetty, Radhakrishna
AU - Bang-Berthelsen, Claus Heiner
AU - Ciurkot, Klaudia Weronika
AU - Vestergaard, Mike
AU - Hägglund, Per Mårten
AU - Prakash, H.S.
AU - Hobley, Timothy John
PY - 2021
Y1 - 2021
N2 - There is increasing interest in gluten degrading enzymes for use during food and drink processing. The industrially available enzymes usually work best at low to ambient temperatures. However, food manufacturing is often conducted at higher temperatures. Therefore, thermostable gluten degrading enzymes are of great interest. We have identified a new thermostable gluten degrading proline specific prolyl endoprotease from the archaea Thermococcus kodakarensis. We then cloned and expressed it in Escherichia coli. The prolyl endoprotease was found to have a size of 70.1 kDa. The synthetic dipeptide Z-Gly-Pro-p-nitroanilide was used to characterise the prolyl endoprotease and it had maximum activity at pH 7 and 77°C. The VmaxKm and kcat values of the purified prolyl endoprotease were calculated to be 3.14 mM/s, 1.10 mM and 54 s-1 respectively. When the immunogenic gluten peptides PQPQLPYPQPQLPY (alpha-gliadin) and SQQQFPQPQQPFPQQP (gamma-hordein) were used as substrates, the prolyl endoprotease was able to degrade these. Furthermore, gluten in wort was reduced when the prolyl endoprotease was used during mashing of barley malt. The discoveries open up for new food processing possibilities and further the understanding of proline specific protease diversity.
AB - There is increasing interest in gluten degrading enzymes for use during food and drink processing. The industrially available enzymes usually work best at low to ambient temperatures. However, food manufacturing is often conducted at higher temperatures. Therefore, thermostable gluten degrading enzymes are of great interest. We have identified a new thermostable gluten degrading proline specific prolyl endoprotease from the archaea Thermococcus kodakarensis. We then cloned and expressed it in Escherichia coli. The prolyl endoprotease was found to have a size of 70.1 kDa. The synthetic dipeptide Z-Gly-Pro-p-nitroanilide was used to characterise the prolyl endoprotease and it had maximum activity at pH 7 and 77°C. The VmaxKm and kcat values of the purified prolyl endoprotease were calculated to be 3.14 mM/s, 1.10 mM and 54 s-1 respectively. When the immunogenic gluten peptides PQPQLPYPQPQLPY (alpha-gliadin) and SQQQFPQPQQPFPQQP (gamma-hordein) were used as substrates, the prolyl endoprotease was able to degrade these. Furthermore, gluten in wort was reduced when the prolyl endoprotease was used during mashing of barley malt. The discoveries open up for new food processing possibilities and further the understanding of proline specific protease diversity.
KW - PEP
KW - Hordein
KW - Immunogenic peptide
KW - Prolyl endoprotease
U2 - 10.1093/femsle/fnac006
DO - 10.1093/femsle/fnac006
M3 - Journal article
C2 - 35038331
SN - 0378-1097
VL - 368
JO - FEMS Microbiology Letters
JF - FEMS Microbiology Letters
IS - 21-24
M1 - fnac006
ER -