Changes in mycorrhiza development in maize induced by crop management practices

M.E. Gavito, M.H. Miller

    Research output: Contribution to journalJournal articleResearch

    Abstract

    We selected three crop production practices; crop rotation, tillage and phosphorus fertilization, all known to affect arbuscular mycorrhiza (AM) development, to study early AM intraradical colonization in maize. Half of the plots were planted during the first year with either a host (maize, Zea mays L.) or a non-host (canola, Brassica napus L.) crop, and all of them with maize for the second year. Tillage and P fertilization treatments were applied to the plots in the second year. Mycorrhiza development in maize was measured in pot culture bioassays conducted before planting and after harvest of the previous and the subsequent crops, and in the field during the second crop season. Previous cropping of a soil with canola (Brassica napus L.), a non-host plant species, delayed mycorrhiza development of maize in a bioassay conducted with that soil in comparison with a previous cropping cycle with maize (Zea mays L.) or with the original plant species in the field site, bromegrass (Bromus inermis Leys.) and alfalfa (Medicago sativa L.). The delay in mycorrhiza development after cropping with canola was also observed in samples taken from the field and in a bioassay, both conducted at the beginning of the subsequent cropping cycle. Tillage had, on average, little effect on intraradical colonization either in the field or in the bioassays. Phosphorus fertilization also had little effect on mycorrhiza development in the field. Crop rotation with a non-host had the strongest effect on intraradical mycorrhiza development of the three practices studied.
    Original languageEnglish
    JournalPlant and Soil
    Volume198
    Issue number2
    Pages (from-to)185-192
    ISSN0032-079X
    DOIs
    Publication statusPublished - 1998

    Fingerprint

    Dive into the research topics of 'Changes in mycorrhiza development in maize induced by crop management practices'. Together they form a unique fingerprint.

    Cite this