TY - JOUR
T1 - Change Detection for Thematic Mapping by Means of Airborne Multitemporal Polarimetric SAR Imagery
AU - Dierking, W.
AU - Skriver, Henning
N1 - Copyright: 2002 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE
PY - 2002
Y1 - 2002
N2 - The paper addresses the detection of changes in multitemporal polarimetric radar images, focusing on small objects and narrow linear features. The images were acquired at C- and L-band by the airborne EMISAR system. It is found that the radar intensities are better suited for change detection than the correlation coefficient and the phase difference between the co-polarized channels. In the case of linear features, there is no obvious difference between the C- and L-bands , and slight variations of the flight tracks are acceptable at look angles larger than 35 degrees. Theoretical detection thresholds are evaluated from the statistical distribution of the intensity ratio due to speckle. For the linear features and for urban environments, the observed thresholds are larger than the theoretical predictions. This is interpreted as an effect of radar intensity variations on length scales smaller than the spatial image resolution. The signature of urban areas is very sensitive to deviations between the flight tracks, and the sensitivity is larger at C-band than at L-band. On the other hand, the intensity contrast between buildings and the urban background is smaller at L-band and larger at C-band. For change detection, thresholds may have to be chosen separately for each object class because the intensity ratios of different object classes vary differently as a function of time.
AB - The paper addresses the detection of changes in multitemporal polarimetric radar images, focusing on small objects and narrow linear features. The images were acquired at C- and L-band by the airborne EMISAR system. It is found that the radar intensities are better suited for change detection than the correlation coefficient and the phase difference between the co-polarized channels. In the case of linear features, there is no obvious difference between the C- and L-bands , and slight variations of the flight tracks are acceptable at look angles larger than 35 degrees. Theoretical detection thresholds are evaluated from the statistical distribution of the intensity ratio due to speckle. For the linear features and for urban environments, the observed thresholds are larger than the theoretical predictions. This is interpreted as an effect of radar intensity variations on length scales smaller than the spatial image resolution. The signature of urban areas is very sensitive to deviations between the flight tracks, and the sensitivity is larger at C-band than at L-band. On the other hand, the intensity contrast between buildings and the urban background is smaller at L-band and larger at C-band. For change detection, thresholds may have to be chosen separately for each object class because the intensity ratios of different object classes vary differently as a function of time.
U2 - 10.1109/TGRS.2002.1000322
DO - 10.1109/TGRS.2002.1000322
M3 - Journal article
SN - 0196-2892
VL - 40
SP - 618
EP - 636
JO - I E E E Transactions on Geoscience and Remote Sensing
JF - I E E E Transactions on Geoscience and Remote Sensing
IS - 3
ER -