Challenges in using scanning lidars to estimate wind resources in complex terrain - DTU Orbit (26/09/2019)

Challenges in using scanning lidars to estimate wind resources in complex terrain

Pairs of synchronously scanning Doppler lidars measure the average wind speed of flows crossing the parallel ridges at Perdigão, Portugal, with the ultimate purpose of wind resource estimation. The availability of the data from the lidars when they are running is quite low (50–70%). Furthermore, the instruments did only run less than half the time of the experimental period. These figures have to be improved in order for scanning lidars to be a viable option for wind resource estimation. The variations along the ridges are compared to neutral LES calculations making a good match at the upstream ridge but a significantly worse prediction at the downstream ridge. One reason could be an insufficient representation of the terrain. Another unknown is the influence of the atmospheric stability on the flow which is clearly seen by the scanning lidars.

General information
Publication status: Published
Organisations: Department of Wind Energy, Meteorology & Remote Sensing, Resource Assessment Modelling, Aerodynamic design
Corresponding author: Mann, J.
Contributors: Mann, J., Menke, R., Vasiljević, N., Berg, J., Troldborg, N.
Number of pages: 8
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Journal of Physics: Conference Series
Volume: 1037
Issue number: 7
Article number: 072017
ISSN (Print): 1742-6596
Ratings:
BFI (2018): BFI-level 1
Scopus rating (2018): CiteScore 0.51 SJR 0.221 SNIP 0.454
Original language: English
Electronic versions:
Mann_2018_J._Phys._3A_Conf._Ser._1037_072017.pdf
DOIs:
10.1088/1742-6596/1037/7/072017

Bibliographical note
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Source: FindIt
Source ID: 2435910139
Research output: Contribution to journal › Conference article – Annual report year: 2018 › Research › peer-review