Challenges in biodegradation of non-degradable thermoplastic waste: From environmental impact to operational readiness

Navid Taghavi, Isuru Abeykoon Udugama, Wei-Qin Zhuang, Saeid Baroutian*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

Non-degradable plastics such as polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyethylene terephthalate (PET) are among the most generated plastic wastes in municipal and industrial waste streams. The mismanagement of abandoned plastics and toxic plastic additives have threatened marine and land fauna as well as human beings for several decades. The available thermal processes can degrade plastic at pilot- and commercial-scale. However, they are energy-intensive and can generate toxic gases. Degradation of plastic waste with the help of live microorganisms (biodegradation) is an eco- and environmentally friendly method for plastic degradation, although the slow processing time and low degradation rate still hinder its applications at pilot- and large-scale. In this review, the advantages and limitations of current plastic degradation methods, their technology readiness levels (TRL), biodegradation mechanisms and the associated challenges in biodegradation are assessed in detail. Based on this analysis, a path toward an efficient and greener way toward degradation of non-recyclable single-use PE, PP, PS and PET plastic is proposed.
Original languageEnglish
Article number107731
JournalBiotechnology Advances
Volume49
Number of pages19
ISSN0734-9750
DOIs
Publication statusPublished - 2021

Keywords

  • Biodegradation
  • Plastic waste
  • Pre-treatment
  • Biosurfactant
  • Environmental impact
  • Technology readiness levels

Fingerprint Dive into the research topics of 'Challenges in biodegradation of non-degradable thermoplastic waste: From environmental impact to operational readiness'. Together they form a unique fingerprint.

Cite this