Cellulase production by white-rot basidiomycetous fungi: solid-state versus submerged cultivation

Research output: Contribution to journalJournal article – Annual report year: 2018Researchpeer-review

View graph of relations

White-rot basidiomycetous (WRB) fungi are a group of wood-decaying fungi that are known to be endowed with the ability to secrete enzymes that can catalyze decomposition of a range of plant cell wall polysaccharides, including cellulose and lignin. Expression of these enzymes is induced by the substrate and the enzyme yields obtained depend on the growth of the fungi and thus the mode of cultivation. In order to exploit WRB fungi for local enzyme production for converting lignocellulosic materials in biorefinery processes, the fungi can principally be cultivated in either solid-state (SSC) or submerged cultivation (SmC) systems. In this review, we quantitatively assess the data available in the literature on cellulase production yields by WRB fungi cultivated by SSC or SmC. The review also assesses cellulolytic enzyme production rates and enzyme recovery when WRB fungi are cultivated on different biomass residues in SSC or SmC systems. Although some variation in cellulase production yields have been reported for certain substrates, the analysis convincingly shows that SmC is generally more efficient than SSC for obtaining high cellulase production yields and high cellulase production rates on the substrate used. However, the cultivation method also affects the enzyme activity profile obtained, and the resulting enzyme titers and significant dilution of the enzymes usually occurs in SmC. The review also highlights some future approaches, including sequential cultivations and co-cultivation of WRB fungi for improved enzyme expression, as well as on-site approaches for production of enzyme blends for industrial biomass conversion. The quantitative comparisons made have implications for selection of the most appropriate cultivation method for WRB fungi for attaining maximal cellulase production.
Original languageEnglish
JournalApplied Microbiology and Biotechnology
Volume102
Issue number14
Pages (from-to)5827–5839
ISSN0175-7598
DOIs
Publication statusPublished - 2018
CitationsWeb of Science® Times Cited: No match on DOI

    Research areas

  • Cellulase production, Fungal cultivation, Solid-state, Submerged, White-rot fungi

ID: 148019225