Cavitation nuclei in water exposed to transient pressures

Cavitation nuclei in water exposed to transient pressures

A model of skin-stabilized interfacial cavitation nuclei and their response to tensile and compressive stressing is presented. The model is evaluated in relation to experimental tensile strength results for water at rest at the bottom of an open water-filled container at atmospheric pressure and room temperature. These results are obtained by recording the initial growth of cavities generated by a short tensile pulse applied to the bottom of the container. It is found that the cavitation nuclei shift their tensile strength depending on their pressure history. Static pressurization for an extended period of time prior to testing is known to increase the tensile strength of water, but little information is available on how it is affected by compression pulses of short duration. This is addressed by imposing compression pulses of approximately 1 ms duration and a peak intensity of a few bar prior to the tension pulse. The observations are interpreted on the basis of the new model.

General information
Publication status: Published
Organisations: Department of Physics, Biophysics and Fluids
Contributors: Andersen, A. P., Mørch, K. A.
Pages: 424-448
Publication date: 2015
Peer-reviewed: Yes

Publication information
Journal: Journal of Fluid Mechanics
Volume: 771
ISSN (Print): 0022-1120
Ratings:
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 2.57 SJR 1.896 SNIP 1.628
Web of Science (2015): Impact factor 2.514
Web of Science (2015): Indexed yes
Original language: English
Keywords: Papers, bubble dynamics, cavitation, drops and bubbles, Atmospheric pressure, Cavitation, Containers, Tensile testing, Bubble dynamics, Compression pulse, Drops and bubbles, Interfacial cavitation, Pressure history, Room temperature, Short durations, Transient pressures, Tensile strength
DOIs:
10.1017/jfm.2015.185
Source: FindIt
Source ID: 274756209
Research output: Contribution to journal › Journal article – Annual report year: 2015 › Research › peer-review