Cavitation Nuclei: Experiments and Theory - DTU Orbit (19/08/2019)

The Swedish astrophysicist and Nobel Prize winner Hannes Alfven said: Theories come and go - the experiment is here forever. Often a theory, which we set up to describe an observed physical phenomenon, suffers from the lack of knowledge of decisive parameters, and therefore at best the theory becomes insufficient. Contrary, the experiment always reveals nature itself, though at prevailing experimental conditions. With essential parameters being out of control and even maybe unidentified, apparently similar experiments may deviate way beyond our expectations. However, these discrepancies offer us a chance to reflect on the character of the unknown parameters. In this way non-concordant experimental results may hold the key to the development of better theories - and to new experiments for the testing of their validity. Cavitation and cavitation nuclei are phenomena of that character.

General information
Publication status: Published
Organisations: Department of Physics
Contributors: Mørch, K. A.
Pages: 176-189
Publication date: Apr 2009
Peer-reviewed: Yes

Publication information
Journal: Journal of Hydrodynamics
Volume: 21
Issue number: 2
ISSN (Print): 1001-6058
Ratings:
Scopus rating (2009): SJR 0.23 SNIP 0.31
Web of Science (2009): Indexed yes
Original language: English
Keywords: cavitation nuclei, scanning tunneling microscopy, atomic force microscopy, gas bubbles, surface nano voids
DOI's:
10.1016/S1001-6058(08)60135-3
Source: orbit
Source-ID: 249060
Research output: Contribution to journal › Journal article – Annual report year: 2009 › Research › peer-review