Causes and consequences of technical, biological and spatial interactions in fisheries management modelled from the individual distribution of fishing effort

Research output: Contribution to conferencePaperResearch

160 Downloads (Pure)

Abstract

Our individual-vessel based bio-economic modeling approach (www.displace-project.org) evaluates the harvesting dynamics using information about fishing ground preferences and experienced vessel-specific catch rates. The assessment computes the daily decision-making of the fishing vessels and the individual or overall economic and stock status indicators together with the size-based spatial distribution dynamics of the main fishery resources. In this application to the western Baltic Sea sprat, herring and cod fisheries of Danish, Swedish and German commercial vessels (>12 m) the biological interactions (fish predation mortality) are included by a dynamic coupling to the Stochastic Multi Species model (SMS) on annual basis, under the mitigation from the “yet to be implemented” NATURA 2000 zonation in the area. The spatial technical interactions between vessels revealed to be the predominant factors affecting the fishery profit and the energy efficiency while species interactions play a minor role, albeit increasing the final profit estimates. Interestingly, the zonation affects the profit depending on the biological interactions from a spatial effect on the size composition of the stocks, therefore the fish size composition in the landings originating from different fishing areas. Such a model coupling contributes to the integration of different spatial activities in certain sea areas considering the combined effects of technical and biological interactions and dynamics for reducing potential inefficient management and use of space according to the aims of both EU CFP regulation (No 1380/2013) and EU MSP (2014/89/EU) directive
Original languageEnglish
Publication date2015
Number of pages3
Publication statusPublished - 2015
EventICES Annual Science Conference 2015 - Copenhagen, Denmark
Duration: 21 Sep 201525 Sep 2015

Conference

ConferenceICES Annual Science Conference 2015
CountryDenmark
CityCopenhagen
Period21/09/201525/09/2015

Cite this

@conference{7709291027e4488b9783bc447e0609b4,
title = "Causes and consequences of technical, biological and spatial interactions in fisheries management modelled from the individual distribution of fishing effort",
abstract = "Our individual-vessel based bio-economic modeling approach (www.displace-project.org) evaluates the harvesting dynamics using information about fishing ground preferences and experienced vessel-specific catch rates. The assessment computes the daily decision-making of the fishing vessels and the individual or overall economic and stock status indicators together with the size-based spatial distribution dynamics of the main fishery resources. In this application to the western Baltic Sea sprat, herring and cod fisheries of Danish, Swedish and German commercial vessels (>12 m) the biological interactions (fish predation mortality) are included by a dynamic coupling to the Stochastic Multi Species model (SMS) on annual basis, under the mitigation from the “yet to be implemented” NATURA 2000 zonation in the area. The spatial technical interactions between vessels revealed to be the predominant factors affecting the fishery profit and the energy efficiency while species interactions play a minor role, albeit increasing the final profit estimates. Interestingly, the zonation affects the profit depending on the biological interactions from a spatial effect on the size composition of the stocks, therefore the fish size composition in the landings originating from different fishing areas. Such a model coupling contributes to the integration of different spatial activities in certain sea areas considering the combined effects of technical and biological interactions and dynamics for reducing potential inefficient management and use of space according to the aims of both EU CFP regulation (No 1380/2013) and EU MSP (2014/89/EU) directive",
author = "Francois Bastardie and Nielsen, {J. Rasmus} and Morten Vinther",
year = "2015",
language = "English",
note = "ICES Annual Science Conference 2015, ICES ASC 2015 ; Conference date: 21-09-2015 Through 25-09-2015",

}

Causes and consequences of technical, biological and spatial interactions in fisheries management modelled from the individual distribution of fishing effort. / Bastardie, Francois; Nielsen, J. Rasmus; Vinther, Morten.

2015. Paper presented at ICES Annual Science Conference 2015, Copenhagen, Denmark.

Research output: Contribution to conferencePaperResearch

TY - CONF

T1 - Causes and consequences of technical, biological and spatial interactions in fisheries management modelled from the individual distribution of fishing effort

AU - Bastardie, Francois

AU - Nielsen, J. Rasmus

AU - Vinther, Morten

PY - 2015

Y1 - 2015

N2 - Our individual-vessel based bio-economic modeling approach (www.displace-project.org) evaluates the harvesting dynamics using information about fishing ground preferences and experienced vessel-specific catch rates. The assessment computes the daily decision-making of the fishing vessels and the individual or overall economic and stock status indicators together with the size-based spatial distribution dynamics of the main fishery resources. In this application to the western Baltic Sea sprat, herring and cod fisheries of Danish, Swedish and German commercial vessels (>12 m) the biological interactions (fish predation mortality) are included by a dynamic coupling to the Stochastic Multi Species model (SMS) on annual basis, under the mitigation from the “yet to be implemented” NATURA 2000 zonation in the area. The spatial technical interactions between vessels revealed to be the predominant factors affecting the fishery profit and the energy efficiency while species interactions play a minor role, albeit increasing the final profit estimates. Interestingly, the zonation affects the profit depending on the biological interactions from a spatial effect on the size composition of the stocks, therefore the fish size composition in the landings originating from different fishing areas. Such a model coupling contributes to the integration of different spatial activities in certain sea areas considering the combined effects of technical and biological interactions and dynamics for reducing potential inefficient management and use of space according to the aims of both EU CFP regulation (No 1380/2013) and EU MSP (2014/89/EU) directive

AB - Our individual-vessel based bio-economic modeling approach (www.displace-project.org) evaluates the harvesting dynamics using information about fishing ground preferences and experienced vessel-specific catch rates. The assessment computes the daily decision-making of the fishing vessels and the individual or overall economic and stock status indicators together with the size-based spatial distribution dynamics of the main fishery resources. In this application to the western Baltic Sea sprat, herring and cod fisheries of Danish, Swedish and German commercial vessels (>12 m) the biological interactions (fish predation mortality) are included by a dynamic coupling to the Stochastic Multi Species model (SMS) on annual basis, under the mitigation from the “yet to be implemented” NATURA 2000 zonation in the area. The spatial technical interactions between vessels revealed to be the predominant factors affecting the fishery profit and the energy efficiency while species interactions play a minor role, albeit increasing the final profit estimates. Interestingly, the zonation affects the profit depending on the biological interactions from a spatial effect on the size composition of the stocks, therefore the fish size composition in the landings originating from different fishing areas. Such a model coupling contributes to the integration of different spatial activities in certain sea areas considering the combined effects of technical and biological interactions and dynamics for reducing potential inefficient management and use of space according to the aims of both EU CFP regulation (No 1380/2013) and EU MSP (2014/89/EU) directive

M3 - Paper

ER -