Catalytic Hydropyrolysis of Biomass using Molybdenum Sulfide Based Catalyst. Effect of Promoters

Magnus Zingler Stummann, Asger Baltzer Hansen, Lars Pilsgaard Hansen, Bente Davidsen, Søren Birk Rasmussen, Peter Viwel, Jostein Gabrielsen, Peter Arendt Jensen, Anker Degn Jensen, Martin Høj*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

Catalytic hydropyrolysis of beech wood was conducted in a fluid bed reactor at 450°C and a total pressure of 26 bar. The differences in hydrodeoxygenation activity, selectivity and the resulting product composition between sulfided Mo/MgAl2O4, CoMo/MgAl2O4 or NiMo/MgAl2O4 catalysts have been investigated. The acidity and molybdate species in the oxide catalyst precursors were characterized with ammonia temperature programmed desorption and Raman spectroscopy. The spent sulfided catalysts were also extensively characterized by scanning electron microscopy (SEM) and by scanning transmission electron microscopy (STEM) coupled with energy dispersive X-ray spectroscopy (EDS). The catalytic hydropyrolysis of beech wood produced four kinds of products: Liquid organic and aqueous phases, solid char and gases. The solid char and aqueous phase yields were not affected by the type of catalyst. The sum of condensed organics and C4+ gas yield varied between 24.3 and 26.4 wt.% on dry, ash free basis (daf) and was highest for the Mo catalyst and lowest for the NiMo catalyst. The NiMo catalyst had the highest hydrogenation, cracking, and de-carbonylation activity. The oxygen content in the condensed organic phase was between 9.0 and 12 wt.% on dry basis (db) and was lowest for the CoMo catalyst and highest for the Mo catalyst. The carbon recovery in the condensable organics was 39 % for both the CoMo and the Mo, and 37 % for the NiMo catalyst. These results indicate that the CoMo, due to its high deoxygenation activity and high carbon recovery, is the most suitable catalyst for catalytic hydropyrolysis. The carbon content on the spent CoMo was between 1.5 and 3.3 wt.% and between 0.9 and 3.1 on the spent NiMo catalyst, but between 5.0 and 5.5 wt.% on the spent Mo catalyst. The higher carbon content on the spent Mo catalyst was probably due to its lower deoxygenation and hydrogenation activity. Calcium particles and small amounts of potassium (≤1.5 wt.%) were detected on all spent catalysts using STEM-EDS, showing that alkali metals are transferred from the biomass to the catalyst, which potentially could lead to catalyst deactivation.
Original languageEnglish
JournalEnergy and Fuels
Volume33
Issue number2
Pages (from-to)1302-1313
ISSN0887-0624
DOIs
Publication statusPublished - 2019

Cite this

Stummann, M. Z., Hansen, A. B., Hansen, L. P., Davidsen, B., Rasmussen, S. B., Viwel, P., ... Høj, M. (2019). Catalytic Hydropyrolysis of Biomass using Molybdenum Sulfide Based Catalyst. Effect of Promoters. Energy and Fuels, 33(2), 1302-1313. https://doi.org/10.1021/acs.energyfuels.8b04191
Stummann, Magnus Zingler ; Hansen, Asger Baltzer ; Hansen, Lars Pilsgaard ; Davidsen, Bente ; Rasmussen, Søren Birk ; Viwel, Peter ; Gabrielsen, Jostein ; Jensen, Peter Arendt ; Jensen, Anker Degn ; Høj, Martin. / Catalytic Hydropyrolysis of Biomass using Molybdenum Sulfide Based Catalyst. Effect of Promoters. In: Energy and Fuels. 2019 ; Vol. 33, No. 2. pp. 1302-1313.
@article{c72344875c3e485a95e2418ef430695a,
title = "Catalytic Hydropyrolysis of Biomass using Molybdenum Sulfide Based Catalyst. Effect of Promoters",
abstract = "Catalytic hydropyrolysis of beech wood was conducted in a fluid bed reactor at 450°C and a total pressure of 26 bar. The differences in hydrodeoxygenation activity, selectivity and the resulting product composition between sulfided Mo/MgAl2O4, CoMo/MgAl2O4 or NiMo/MgAl2O4 catalysts have been investigated. The acidity and molybdate species in the oxide catalyst precursors were characterized with ammonia temperature programmed desorption and Raman spectroscopy. The spent sulfided catalysts were also extensively characterized by scanning electron microscopy (SEM) and by scanning transmission electron microscopy (STEM) coupled with energy dispersive X-ray spectroscopy (EDS). The catalytic hydropyrolysis of beech wood produced four kinds of products: Liquid organic and aqueous phases, solid char and gases. The solid char and aqueous phase yields were not affected by the type of catalyst. The sum of condensed organics and C4+ gas yield varied between 24.3 and 26.4 wt.{\%} on dry, ash free basis (daf) and was highest for the Mo catalyst and lowest for the NiMo catalyst. The NiMo catalyst had the highest hydrogenation, cracking, and de-carbonylation activity. The oxygen content in the condensed organic phase was between 9.0 and 12 wt.{\%} on dry basis (db) and was lowest for the CoMo catalyst and highest for the Mo catalyst. The carbon recovery in the condensable organics was 39 {\%} for both the CoMo and the Mo, and 37 {\%} for the NiMo catalyst. These results indicate that the CoMo, due to its high deoxygenation activity and high carbon recovery, is the most suitable catalyst for catalytic hydropyrolysis. The carbon content on the spent CoMo was between 1.5 and 3.3 wt.{\%} and between 0.9 and 3.1 on the spent NiMo catalyst, but between 5.0 and 5.5 wt.{\%} on the spent Mo catalyst. The higher carbon content on the spent Mo catalyst was probably due to its lower deoxygenation and hydrogenation activity. Calcium particles and small amounts of potassium (≤1.5 wt.{\%}) were detected on all spent catalysts using STEM-EDS, showing that alkali metals are transferred from the biomass to the catalyst, which potentially could lead to catalyst deactivation.",
author = "Stummann, {Magnus Zingler} and Hansen, {Asger Baltzer} and Hansen, {Lars Pilsgaard} and Bente Davidsen and Rasmussen, {S{\o}ren Birk} and Peter Viwel and Jostein Gabrielsen and Jensen, {Peter Arendt} and Jensen, {Anker Degn} and Martin H{\o}j",
year = "2019",
doi = "10.1021/acs.energyfuels.8b04191",
language = "English",
volume = "33",
pages = "1302--1313",
journal = "Energy & Fuels",
issn = "0887-0624",
publisher = "American Chemical Society",
number = "2",

}

Stummann, MZ, Hansen, AB, Hansen, LP, Davidsen, B, Rasmussen, SB, Viwel, P, Gabrielsen, J, Jensen, PA, Jensen, AD & Høj, M 2019, 'Catalytic Hydropyrolysis of Biomass using Molybdenum Sulfide Based Catalyst. Effect of Promoters', Energy and Fuels, vol. 33, no. 2, pp. 1302-1313. https://doi.org/10.1021/acs.energyfuels.8b04191

Catalytic Hydropyrolysis of Biomass using Molybdenum Sulfide Based Catalyst. Effect of Promoters. / Stummann, Magnus Zingler; Hansen, Asger Baltzer; Hansen, Lars Pilsgaard; Davidsen, Bente; Rasmussen, Søren Birk; Viwel, Peter; Gabrielsen, Jostein; Jensen, Peter Arendt; Jensen, Anker Degn; Høj, Martin.

In: Energy and Fuels, Vol. 33, No. 2, 2019, p. 1302-1313.

Research output: Contribution to journalJournal articleResearchpeer-review

TY - JOUR

T1 - Catalytic Hydropyrolysis of Biomass using Molybdenum Sulfide Based Catalyst. Effect of Promoters

AU - Stummann, Magnus Zingler

AU - Hansen, Asger Baltzer

AU - Hansen, Lars Pilsgaard

AU - Davidsen, Bente

AU - Rasmussen, Søren Birk

AU - Viwel, Peter

AU - Gabrielsen, Jostein

AU - Jensen, Peter Arendt

AU - Jensen, Anker Degn

AU - Høj, Martin

PY - 2019

Y1 - 2019

N2 - Catalytic hydropyrolysis of beech wood was conducted in a fluid bed reactor at 450°C and a total pressure of 26 bar. The differences in hydrodeoxygenation activity, selectivity and the resulting product composition between sulfided Mo/MgAl2O4, CoMo/MgAl2O4 or NiMo/MgAl2O4 catalysts have been investigated. The acidity and molybdate species in the oxide catalyst precursors were characterized with ammonia temperature programmed desorption and Raman spectroscopy. The spent sulfided catalysts were also extensively characterized by scanning electron microscopy (SEM) and by scanning transmission electron microscopy (STEM) coupled with energy dispersive X-ray spectroscopy (EDS). The catalytic hydropyrolysis of beech wood produced four kinds of products: Liquid organic and aqueous phases, solid char and gases. The solid char and aqueous phase yields were not affected by the type of catalyst. The sum of condensed organics and C4+ gas yield varied between 24.3 and 26.4 wt.% on dry, ash free basis (daf) and was highest for the Mo catalyst and lowest for the NiMo catalyst. The NiMo catalyst had the highest hydrogenation, cracking, and de-carbonylation activity. The oxygen content in the condensed organic phase was between 9.0 and 12 wt.% on dry basis (db) and was lowest for the CoMo catalyst and highest for the Mo catalyst. The carbon recovery in the condensable organics was 39 % for both the CoMo and the Mo, and 37 % for the NiMo catalyst. These results indicate that the CoMo, due to its high deoxygenation activity and high carbon recovery, is the most suitable catalyst for catalytic hydropyrolysis. The carbon content on the spent CoMo was between 1.5 and 3.3 wt.% and between 0.9 and 3.1 on the spent NiMo catalyst, but between 5.0 and 5.5 wt.% on the spent Mo catalyst. The higher carbon content on the spent Mo catalyst was probably due to its lower deoxygenation and hydrogenation activity. Calcium particles and small amounts of potassium (≤1.5 wt.%) were detected on all spent catalysts using STEM-EDS, showing that alkali metals are transferred from the biomass to the catalyst, which potentially could lead to catalyst deactivation.

AB - Catalytic hydropyrolysis of beech wood was conducted in a fluid bed reactor at 450°C and a total pressure of 26 bar. The differences in hydrodeoxygenation activity, selectivity and the resulting product composition between sulfided Mo/MgAl2O4, CoMo/MgAl2O4 or NiMo/MgAl2O4 catalysts have been investigated. The acidity and molybdate species in the oxide catalyst precursors were characterized with ammonia temperature programmed desorption and Raman spectroscopy. The spent sulfided catalysts were also extensively characterized by scanning electron microscopy (SEM) and by scanning transmission electron microscopy (STEM) coupled with energy dispersive X-ray spectroscopy (EDS). The catalytic hydropyrolysis of beech wood produced four kinds of products: Liquid organic and aqueous phases, solid char and gases. The solid char and aqueous phase yields were not affected by the type of catalyst. The sum of condensed organics and C4+ gas yield varied between 24.3 and 26.4 wt.% on dry, ash free basis (daf) and was highest for the Mo catalyst and lowest for the NiMo catalyst. The NiMo catalyst had the highest hydrogenation, cracking, and de-carbonylation activity. The oxygen content in the condensed organic phase was between 9.0 and 12 wt.% on dry basis (db) and was lowest for the CoMo catalyst and highest for the Mo catalyst. The carbon recovery in the condensable organics was 39 % for both the CoMo and the Mo, and 37 % for the NiMo catalyst. These results indicate that the CoMo, due to its high deoxygenation activity and high carbon recovery, is the most suitable catalyst for catalytic hydropyrolysis. The carbon content on the spent CoMo was between 1.5 and 3.3 wt.% and between 0.9 and 3.1 on the spent NiMo catalyst, but between 5.0 and 5.5 wt.% on the spent Mo catalyst. The higher carbon content on the spent Mo catalyst was probably due to its lower deoxygenation and hydrogenation activity. Calcium particles and small amounts of potassium (≤1.5 wt.%) were detected on all spent catalysts using STEM-EDS, showing that alkali metals are transferred from the biomass to the catalyst, which potentially could lead to catalyst deactivation.

U2 - 10.1021/acs.energyfuels.8b04191

DO - 10.1021/acs.energyfuels.8b04191

M3 - Journal article

VL - 33

SP - 1302

EP - 1313

JO - Energy & Fuels

JF - Energy & Fuels

SN - 0887-0624

IS - 2

ER -