Catalyst evaluation for oxygen reduction reaction in concentrated phosphoric acid at elevated temperatures - DTU Orbit (24/08/2019)

Catalyst evaluation for oxygen reduction reaction in concentrated phosphoric acid at elevated temperatures

Phosphoric acid is the common electrolyte for high-temperature polymer electrolyte fuel cells (HT-PEMFCs) that have advantages such as enhanced CO tolerance and simplified heat and water management. The currently used rotating disk electrode technique is limited to tests in dilute solutions at low temperatures and hence is not suitable for catalyst evaluation for HT-PEMFCs. In this study, we have designed and constructed a half-cell setup to measure the intrinsic activities of catalysts towards the oxygen reduction reaction (ORR) in conditions close to HT-PEMFC cathodes. By optimization of the hydrophobic characteristics of electrodes and the catalyst layer thickness, ORR activities of typical Pt/C catalysts are successfully measured in concentrated phosphoric acid at temperatures above 100 °C. In terms of mass-specific activities, the catalyst exhibits about two times higher activity in the half-cell electrode than that observed in fuel cells, indicating the feasibility of the technique as well as the potential for further improvement of fuel cell electrode performance.

General information
Publication status: Published
Organisations: Department of Energy Conversion and Storage, Proton conductors, Technical University of Denmark
Corresponding author: Li, Q.
Pages: 77-81
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Journal of Power Sources
Volume: 375
ISSN (Print): 0378-7753
Ratings:
BFI (2018): BFI-level 1
Scopus rating (2018): CiteScore 7.19 SJR 1.947 SNIP 1.433
Web of Science (2018): Impact factor 7.467
Web of Science (2018): Indexed yes
Original language: English
Keywords: Oxygen reduction, Catalyst, Half cell, High-temperature, Phosphoric acid
DOIs:
10.1016/j.jpowsour.2017.11.054
Source: FindIt
Source-ID: 2393660755
Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review