CasPER, a method for directed evolution in genomic contexts using mutagenesis and CRISPR/Cas9

Tadas Jakočiūnas, Lasse E. Pedersen, Alicia V. Lis, Michael K. Jensen*, Jay D. Keasling

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

597 Downloads (Pure)


Here we describe a method for robust directed evolution using mutagenesis of large sequence spaces in their genomic contexts. The method employs error-prone PCR and Cas9-mediated genome integration of mutant libraries of large-sized donor variants into single or multiple genomic sites with efficiencies reaching 98–99%. From sequencing of genome integrants, we determined that the mutation frequency along the donor fragments is maintained evenly and successfully integrated into the genomic target loci, indicating that there is no bias of mutational load towards the proximity of the double strand break. To validate the applicability of the method for directed evolution of metabolic gene products we engineered two essential enzymes in the mevalonate pathway of Saccharomyces cerevisiae with selected variants supporting up to 11-fold higher production of isoprenoids. Taken together, our method extends on existing CRISPR technologies by facilitating efficient mutagenesis of hundreds of nucleotides in cognate genomic contexts.
Original languageEnglish
JournalMetabolic Engineering
Pages (from-to)288-296
Publication statusPublished - 2018

Bibliographical note

This is an open access article under the CC BY-NC-ND license (


Dive into the research topics of 'CasPER, a method for directed evolution in genomic contexts using mutagenesis and CRISPR/Cas9'. Together they form a unique fingerprint.

Cite this