Carbon-nitrogen interactions in European forests and semi-natural vegetation - Part 1: Fluxes and budgets of carbon, nitrogen and greenhouse gases from ecosystem monitoring and modelling

Mark A. Sutton, Chris R. Flechard*, Andreas Ibrom, Ute M. Skiba, Wim De Vries, Marcel Van Oijen, David R. Cameron, Nancy B. DIse, Janne F.J. Korhonen, Nina Buchmann, Arnaud Legout, David Simpson, Maria J. Sanz, Marc Aubinet, Denis Loustau, Leonardo Montagnani, Johan Neirynck, Ivan A. Janssens, Mari Pihlatie, Ralf KieseJan Siemens, Andre Jean Francez, Jurgen Augustin, Andrej Varlagin, Janusz Olejnik, Radoslaw Juszczak, Mika Aurela, Daniel Berveiller, Bogdan H. Chojnicki, Ulrich Dämmgen, Nicolas Delpierre, Vesna Djuricic, Julia Drewer, Eric Dufrêne, Werner Eugster, Yannick Fauvel, David Fowler, Arnoud Frumau, André Granier, Patrick Gross, Yannick Hamon, Carole Helfter, Arjan Hensen, Laszlo Horvath, Barbara Kitzler, Bart Kruijt, Werner L. Kutsch, Raquel Lobo-Do-Vale, Annalea Lohila, Bernard Longdoz, Michal V. Marek, Giorgio Matteucci, Marta Mitosinkova, Virginie Moreaux, Albrecht Neftel, Jean Marc Ourcival, Kim Pilegaard, Gabriel Pita, Francisco Sanz, Jan K. Schjoerring, Maria Teresa Sebastià, Y. Sim Tang, Hilde Uggerud, Marek Urbaniak, Netty Van DIjk, Timo Vesala, Sonja Vidic, Caroline Vincke, Tamas Weidinger, Sophie Zechmeister-Boltenstern, Klaus Butterbach-Bahl, Eiko Nemitz

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

15 Downloads (Pure)


The impact of atmospheric reactive nitrogen (Nr) deposition on carbon (C) sequestration in soils and biomass of unfertilized, natural, semi-natural and forest ecosystems has been much debated. Many previous results of this dC=dN response were based on changes in carbon stocks from periodical soil and ecosystem inventories, associated with estimates of Nr deposition obtained from large-scale chemical transport models. This study and a companion paper (Flechard et al., 2020) strive to reduce uncertainties of N effects on C sequestration by linking multi-annual gross and net ecosystem productivity estimates from 40 eddy covariance flux towers across Europe to local measurement-based estimates of dry and wet Nr deposition from a dedicated collocated monitoring network. To identify possible ecological drivers and processes affecting the interplay between C and Nr inputs and losses, these data were also combined with in situ flux measurements of NO, N2O and CH4 fluxes; soil NO3 leaching sampling; and results of soil incubation experiments for N and greenhouse gas (GHG) emissions, as well as surveys of available data from online databases and from the literature, together with forest ecosystem (BASFOR) modelling. Multi-year averages of net ecosystem productivity (NEP) in forests ranged from 70 to 826 gCm2 yr1 at total wetCdry inorganic Nr deposition rates (Ndep) of 0.3 to 4.3 gNm2 yr1 and from 4 to 361 g Cm2 yr1 at Ndep rates of 0.1 to 3.1 gNm2 yr1 in short semi-natural vegetation (moorlands, wetlands and unfertilized extensively managed grasslands). The GHG budgets of the forests were strongly dominated by CO2 exchange, while CH4 and N2O exchange comprised a larger proportion of the GHG balance in short semi-natural vegetation. Uncertainties in elemental budgets were much larger for nitrogen than carbon, especially at sites with elevated Ndep where Nr leaching losses were also very large, and compounded by the lack of reliable data on organic nitrogen and N2 losses by denitrification. Nitrogen losses in the form of NO, N2O and especially NO3 were on average 27%(range 6 % 54 %) of Ndep at sites with Ndep < 1 gNm2 yr1 versus 65% (range 35 % 85 %) for Ndep > 3 gNm2 yr1. Such large levels of Nr loss likely indicate that different stages of N saturation occurred at a number of sites. The joint analysis of the C and N budgets provided further hints that N saturation could be detected in altered patterns of forest growth. Net ecosystem productivity increased with Nr deposition up to 2 2.5 gNm2 yr1, with large scatter associated with a wide range in carbon sequestration efficiency (CSE, defined as the NEP = GPP ratio). At elevated Ndep levels (> 2.5 gNm2 yr1), where inorganic Nr losses were also increasingly large, NEP levelled off and then decreased. The apparent increase in NEP at low to intermediate Ndep levels was partly the result of geographical cross-correlations between Ndep and climate, indicating that the actual mean dC=dN response at individual sites was significantly lower than would be suggested by a simple, straightforward regression of NEP vs. Ndep.

Original languageEnglish
Issue number6
Pages (from-to)1583-1620
Publication statusPublished - 2020

Cite this

Sutton, M. A., Flechard, C. R., Ibrom, A., Skiba, U. M., De Vries, W., Van Oijen, M., Cameron, D. R., DIse, N. B., Korhonen, J. F. J., Buchmann, N., Legout, A., Simpson, D., Sanz, M. J., Aubinet, M., Loustau, D., Montagnani, L., Neirynck, J., Janssens, I. A., Pihlatie, M., ... Nemitz, E. (2020). Carbon-nitrogen interactions in European forests and semi-natural vegetation - Part 1: Fluxes and budgets of carbon, nitrogen and greenhouse gases from ecosystem monitoring and modelling. Biogeosciences, 17(6), 1583-1620.