Carbon dioxide not suitable for extinguishment of smouldering silo fires: static electricity may cause silo explosion - DTU Orbit (14/08/2019)

Carbon dioxide not suitable for extinguishment of smouldering silo fires: static electricity may cause silo explosion

Smouldering fires in wood pellet silos are not uncommon. The fires are often difficult to deal with and extinguishment is a lengthy process. Injection of inert gasses to prevent oxygen from reaching the smouldering fire zone and suppress combustion is a new firefighting strategy. This article argues that injection of inert carbon dioxide into the silo headspace is unsafe. Carbon dioxide is generally available as a liquid under high pressure. When discharged, small particles of dry ice are formed. The rapid flow of particles can generate considerable amounts of static electricity, which can act as a source of ignition if ignitable pyrolysis gasses are present. This article discusses a serious wood pellet smouldering fire and silo explosion in Norway in 2010, which took place when firefighters discharged portable CO2 fire extinguishers into the headspace. The attempt to suppress the fire may have ignited pyrolysis gasses. The article examines selected guidelines, standards, popular wood pellet handbooks and other literature and argues that the electrostatic hazard is widely under-appreciated. In the past, major explosions have been attributed to electrostatic ignition of flammable vapours during the release of CO2 for fire prevention purposes. There is evidence to suggest that those early lessons learned have at least partly passed out of sight.

General information
Publication status: Published
Organisations: Department of Applied Mathematics and Computer Science, Dynamical Systems, Statistics and Data Analysis
Contributors: Hedlund, F. H.
Pages: 113–119
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Biomass & Bioenergy
Volume: 108
ISSN (Print): 0961-9534
Ratings:
 BFI (2018): BFI-level 2
 Scopus rating (2018): CiteScore 3.96 SJR 1.072 SNIP 1.26
 Web of Science (2018): Impact factor 3.537
Web of Science (2018): Indexed yes
Original language: English
Keywords: Wood pellets, Silo, Smoldering fire, Explosion, Carbon dioxide, Static electricity, Firefighting
Electronic versions:
Pellet_silo_fire_explosion_17_submit_pre_print_Orbit_.pdf
DOIs:
10.1016/j.biombioe.2017.11.009
Source: PublicationPreSubmission
Source-ID: 139578824
Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review