TY - JOUR
T1 - Can field populations of the enchytraeid, Cognettia sphagnetorum, adapt to increased drought stress?
AU - Maraldo, Kristine
AU - Schmidt, Inger Kappel
AU - Beier, Claus
AU - Holmstrup, Martin
PY - 2008
Y1 - 2008
N2 - The ability to evolve increased drought tolerance in response to climate change was investigated in the enchytraeid, Cognettia sphagnetorum. Populations exposed to reduced precipitation or increased night time temperature for more than six years were collected in mixed Calluna/grass heathland at the Mols Laboratory, Denmark. The level of prolonged drought and increased temperature corresponded to a predicted climate change scenario and has been applied since 1999. In autumn 2005, enchytraeids were sampled in 3 cm intervals down to 9 cm depth and total number, biomass, diversity and soil organic matter were determined. The drought treatment resulted in a significant reduction of the density and biomass of enchytraeids, as well as changes in the species composition. In total, five different genera were found at the site in all three treatments (control, temperature and drought). C. sphagnetorum was the dominant species, especially in the upper 0-3 cm, and was clearly affected by the drought treatment. C. sphagnetorum from all plots were cultured in the laboratory to rear second or third generation adults. Results showed that populations of drought treated plots had not developed an increased drought resistance compared to populations of control or warming plots even after several years of a putative severe selection. Lack of adaptive potential in C. sphagnetorum suggests that more frequent periods with drought in the future will have a very strong negative influence on enchytraeid density, biomass and diversity. (C) 2008 Elsevier Ltd. All rights reserved.
AB - The ability to evolve increased drought tolerance in response to climate change was investigated in the enchytraeid, Cognettia sphagnetorum. Populations exposed to reduced precipitation or increased night time temperature for more than six years were collected in mixed Calluna/grass heathland at the Mols Laboratory, Denmark. The level of prolonged drought and increased temperature corresponded to a predicted climate change scenario and has been applied since 1999. In autumn 2005, enchytraeids were sampled in 3 cm intervals down to 9 cm depth and total number, biomass, diversity and soil organic matter were determined. The drought treatment resulted in a significant reduction of the density and biomass of enchytraeids, as well as changes in the species composition. In total, five different genera were found at the site in all three treatments (control, temperature and drought). C. sphagnetorum was the dominant species, especially in the upper 0-3 cm, and was clearly affected by the drought treatment. C. sphagnetorum from all plots were cultured in the laboratory to rear second or third generation adults. Results showed that populations of drought treated plots had not developed an increased drought resistance compared to populations of control or warming plots even after several years of a putative severe selection. Lack of adaptive potential in C. sphagnetorum suggests that more frequent periods with drought in the future will have a very strong negative influence on enchytraeid density, biomass and diversity. (C) 2008 Elsevier Ltd. All rights reserved.
KW - Samfund og systemer
U2 - 10.1016/j.soilbio.2008.02.016
DO - 10.1016/j.soilbio.2008.02.016
M3 - Journal article
SN - 0038-0717
VL - 40
SP - 1765
EP - 1771
JO - Soil Biology & Biochemistry
JF - Soil Biology & Biochemistry
IS - 7
ER -