Abstract
Camber evolution and stress development during co-firing of asymmetric bilayer laminates, consisting of porous Ce0.9Gd0.1O1.95 gadolinium-doped cerium oxide (CGO) and La0.85Sr0.15MnO3
lanthanum strontium manganate (LSM)-CGO were investigated. Individual layer shrinkage was measured by optical dilatometer, and the uniaxial viscosities were determined as a function of layer density using a vertical sintering approach. The camber evolution in the bilayer laminates was recorded in situ during co-firing and it was found to correspond well with the one predicted by the theoretical model. The estimated sintering mismatch stress in co-fired CGO-LSM/CGO bilayer laminates was significantly lower than general sintering stresses expected for free sintering conditions. As a result, no co-firing defects were observed in the bilayer laminates, illustrating an acceptable sintering compatibility of the ceramic layers.
lanthanum strontium manganate (LSM)-CGO were investigated. Individual layer shrinkage was measured by optical dilatometer, and the uniaxial viscosities were determined as a function of layer density using a vertical sintering approach. The camber evolution in the bilayer laminates was recorded in situ during co-firing and it was found to correspond well with the one predicted by the theoretical model. The estimated sintering mismatch stress in co-fired CGO-LSM/CGO bilayer laminates was significantly lower than general sintering stresses expected for free sintering conditions. As a result, no co-firing defects were observed in the bilayer laminates, illustrating an acceptable sintering compatibility of the ceramic layers.
Original language | English |
---|---|
Journal | Journal of the American Ceramic Society |
Volume | 96 |
Issue number | 3 |
Pages (from-to) | 972-978 |
ISSN | 0002-7820 |
DOIs | |
Publication status | Published - 2013 |