Abstract
This paper presents a methodology to calculate wind turbine load sensitivities to turbulence parameters through the use of response surfaces. A response surface is a high-dimensional polynomial surface that can be calibrated to any set of input/output data and then used to generate synthetic data at a low computational cost. Sobol sensitivity indices (SIs) can then be calculated with relative ease using the calibrated response surface. The proposed methodology is demonstrated by calculating the total sensitivity of the maximum blade root bending moment of the WindPACT 5 MW reference model to four turbulence input parameters: a reference mean wind speed, a reference turbulence intensity, the Kaimal length scale, and a novel parameter reflecting the nonstationarity present in the inflow turbulence. The input/output data used to calibrate the response surface were generated for a previous project. The fit of the calibrated response surface is evaluated in terms of error between the model and the training data and in terms of the convergence. The Sobol SIs are calculated using the calibrated response surface, and the convergence is examined. The Sobol SIs reveal that, of the four turbulence parameters examined in this paper, the variance caused by the Kaimal length scale and nonstationarity parameter are negligible. Thus, the findings in this paper represent the first systematic evidence that stochastic wind turbine load response statistics can be modeled purely by mean wind wind speed and turbulence intensity.
Original language | English |
---|---|
Article number | 032057 |
Book series | Journal of Physics: Conference Series (Online) |
Volume | 753 |
Issue number | 3 |
Number of pages | 11 |
ISSN | 1742-6596 |
DOIs | |
Publication status | Published - 2016 |
Event | The Science of Making Torque from Wind 2016 - Technische Universität München (TUM), Munich, Germany Duration: 5 Oct 2016 → 7 Oct 2016 Conference number: 6 https://www.events.tum.de/?sub=29 |
Conference
Conference | The Science of Making Torque from Wind 2016 |
---|---|
Number | 6 |
Location | Technische Universität München (TUM) |
Country/Territory | Germany |
City | Munich |
Period | 05/10/2016 → 07/10/2016 |
Internet address |