Buckling strength topology optimization of 2D periodic materials based on linearized bifurcation analysis - DTU Orbit (08/08/2019)

Buckling strength topology optimization of 2D periodic materials based on linearized bifurcation analysis
Low density cellular materials may offer excellent mechanical properties and find wide applicability in lightweight design and infill structures for additive manufacturing, yet currently existing material structures are still far away from their theoretical limit in terms of compressive strength. To explore the existing potential, this paper presents a topology optimization framework for designing periodic cellular materials with maximized strength under compressive loading. Under this condition, the limiting factor of strength is the failure mechanism of buckling instability in the microstructure. In order to predict microstructural buckling, a simplified model based on homogenization theory, a linearized stability criterion and Floquet-Bloch theory is employed. Subsequently, a gradient-based topology optimization problem is formulated to maximize the buckling strength of the most critical failure mode. The framework is utilized to optimize square, triangular and hexagonal microstructures for three different macroscopic load conditions including biaxial, uniaxial and shear loading, and performance assessments are conducted by computation of associated failure surfaces in macroscopic stress space. In all cases, the optimized designs turn out to be first-order hierarchical type microstructures which offer major improvements of strength compared to the initial zero-order designs, however, the gains come at the cost of reductions in stiffness. Furthermore, it is illustrated how imposing geometric symmetry constraints can be exploited to control the shape of the failure surfaces.

General information
Publication status: Published
Organisations: Department of Mechanical Engineering, Solid Mechanics
Contributors: Thomsen, C. R., Wang, F., Sigmund, O.
Pages: 115-136
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Computer Methods in Applied Mechanics and Engineering
Volume: 339
ISSN (Print): 0045-7825
Ratings:
BFI (2018): BFI-level 2
Scopus rating (2018): SJR 2.996 SNIP 2.063
Web of Science (2018): Impact factor 4.821
Web of Science (2018): Indexed yes
Original language: English
Keywords: topology optimization, convex mixed integer programming, local branching, neighborhood search, Periodic materials, Microstructural buckling instability, Floquet-Bloch theory, Macroscopic stress loading
DOIs:
10.1016/j.cma.2018.04.031
Source: FindIt
Source-ID: 2434285013
Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review