Buckling load optimization for 2D continuum models, with alternative formulation for buckling load estimation - DTU Orbit (19/08/2019)

Buckling load estimation of continua modeled by finite element (FE) should be based on non-linear equilibrium. When such equilibrium is obtained by incremental solutions and when sensitivity analysis as well as iterative redesigns are included, the computational demands are large especially due to optimization. Therefore, examples presented in the literature relate to few design variables and/or few degrees of freedom. In the present paper a non-incremental analysis is suggested, and a simple sensitivity analysis as well as recursive redesign is proposed. The implicit geometrical non-linear analysis, based on Green-Lagrange strains, apply the secant stiffness matrix as well as the tangent stiffness matrix, both determined for the equilibrium corresponding to a given reference load, obtained by the Newton-Raphson method. For the formulated eigenvalue problem, which solution gives the estimated buckling load, the tangent stiffness matrix is of major importance. In contrast to formulations based on incremental solutions, the tangent stiffness matrix is here divided into two matrices, the stress stiffness matrix that is linear depending on stresses and the remaining part of the tangent stiffness matrix. Examples verify the effectiveness of the proposed procedure.

General information
Publication status: Published
Organisations: Department of Mechanical Engineering, Solid Mechanics
Contributors: Pedersen, N. L., Pedersen, P.
Pages: 2163-2172
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Structural and Multidisciplinary Optimization
Volume: 58
ISSN (Print): 1615-147X
Ratings:
BFI (2018): BFI-level 2
Scopus rating (2018): CiteScore 4.28
Web of Science (2018): Impact factor 3.925
Web of Science (2018): Indexed yes
Original language: English
Keywords: Buckling estimation, Eigenvalue formulations, Analytical, Optimization, Sensitivities, FE
Electronic versions:
template.pdf. Embargo ended: 15/06/2019
DOIs:
10.1007/s00158-018-2030-3
Source: FindIt
Source-ID: 2435606656
Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review