Broadening of Plasmonic Resonance Due to Electron Collisions with Nanoparticle Boundary: а Quantum Mechanical Consideration

Alexander Uskov, Igor E. Protsenko, N. Asger Mortensen, Eoin P. O’Reilly

Research output: Contribution to journalJournal articleResearchpeer-review

472 Downloads (Pure)

Abstract

We present a quantum mechanical approach to calculate broadening of plasmonic resonances in metallic nanostructures due to collisions of electrons with the surface of the structure. The approach is applicable if the characteristic size of the structure is much larger than the de Broglie electron wavelength in the metal. The approach can be used in studies of plasmonic properties of both single nanoparticles and arrays of nanoparticles. Energy conservation is insured by a self-consistent solution of Maxwell's equations and our model for the photon absorption at the metal boundaries. Consequences of the model are illustrated for the case of spheroid nanoparticles, and results are in good agreement with earlier theories. In particular, we show that the boundary-collision broadening of the plasmonic resonance in spheroid nanoparticles can depend strongly on the polarization of the impinging light.
Original languageEnglish
JournalPlasmonics
Volume9
Issue number1
Pages (from-to)185-192
ISSN1557-1955
DOIs
Publication statusPublished - 2014

Bibliographical note

The final publication is available at Springer via http://dx.doi.org/10.1007/s11468-013-9611-1.

Keywords

  • Plasmonic nanoparticles
  • Plasmonic resonance broadening
  • Surface electron collisions

Fingerprint

Dive into the research topics of 'Broadening of Plasmonic Resonance Due to Electron Collisions with Nanoparticle Boundary: а Quantum Mechanical Consideration'. Together they form a unique fingerprint.

Cite this