TY - JOUR
T1 - Boussinesq evolution equations
T2 - Numerical efficiency, breaking and amplitude dispersion
AU - Bredmose, Henrik
AU - Schaffer, H.
AU - Madsen, Per A.
PY - 2004
Y1 - 2004
N2 - This paper deals with the possibility of using methods and ideas from time domain Boussinesq formulations in the corresponding frequency domain formulations. We term such frequency domain models "evolution equations". First, we demonstrate that the numerical efficiency of the deterministic Boussinesq evolution equations of Madsen and Sorensen [Madsen, P.A., Sorensen, O.R., 1993. Bound waves and triad interactions in shallow water. Ocean Eng. 20 359-388] can be improved by using Fast Fourier Transforms to evaluate the nonlinear terms. For a practical example of irregular waves propagating over a submerged bar, it is demonstrated that evolution equations utilising FFT can be solved around 100 times faster than the corresponding time domain model. Use of FFT provides an efficient bridge between the frequency domain and the time domain. We utilise this by adapting the surface roller model for wave breaking to frequency domain evolution equations. An equation for the variation of the mean water level is derived. Results for regular and irregular waves are presented and compared to results of conventional breaking formulations for evolution equations as well as for results of the corresponding time domain model. Emphasis is given to the shape of the breaking waves. The amplitude dispersion of evolution equations is analysed using a third-order perturbation approach. It is found to exceed the amplitude dispersion of the corresponding time domain model, and the approximation causing this deviation is pinpointed. (C) 2004 Elsevier B.V. All rights reserved.
AB - This paper deals with the possibility of using methods and ideas from time domain Boussinesq formulations in the corresponding frequency domain formulations. We term such frequency domain models "evolution equations". First, we demonstrate that the numerical efficiency of the deterministic Boussinesq evolution equations of Madsen and Sorensen [Madsen, P.A., Sorensen, O.R., 1993. Bound waves and triad interactions in shallow water. Ocean Eng. 20 359-388] can be improved by using Fast Fourier Transforms to evaluate the nonlinear terms. For a practical example of irregular waves propagating over a submerged bar, it is demonstrated that evolution equations utilising FFT can be solved around 100 times faster than the corresponding time domain model. Use of FFT provides an efficient bridge between the frequency domain and the time domain. We utilise this by adapting the surface roller model for wave breaking to frequency domain evolution equations. An equation for the variation of the mean water level is derived. Results for regular and irregular waves are presented and compared to results of conventional breaking formulations for evolution equations as well as for results of the corresponding time domain model. Emphasis is given to the shape of the breaking waves. The amplitude dispersion of evolution equations is analysed using a third-order perturbation approach. It is found to exceed the amplitude dispersion of the corresponding time domain model, and the approximation causing this deviation is pinpointed. (C) 2004 Elsevier B.V. All rights reserved.
U2 - 10.1016/j.coastaleng.2004.07.024
DO - 10.1016/j.coastaleng.2004.07.024
M3 - Journal article
SN - 0378-3839
VL - 51
SP - 1117
EP - 1142
JO - Coastal Engineering
JF - Coastal Engineering
IS - 11-12
ER -