Bottom-up drivers of global patterns of demersal, forage, and pelagic fishes

Colleen M. Petrik*, Charles A. Stock, Ken Haste Andersen, P. Daniël van Denderen, James Watson

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

Large-scale spatial heterogeneity in fisheries production is predominantly controlled by the availability of zooplankton and benthic organisms, which have a complex relationship with primary production. To investigate how cross-ecosystem differences in these drivers determine fish assemblages and productivity, we constructed a spatially explicit mechanistic model of three fish functional types: forage, large pelagic, and demersal fishes. The model is based on allometric scaling principles, includes basic life cycle transitions, and has trophic interactions between the fishes and with their pelagic and benthic food resources. The model was applied to the global ocean, with plankton food web estimates and ocean conditions from a high-resolution earth system model. Further, a simple representation of fishing was included, and led to moderate matches with total, large pelagic, and demersal catches, including re-creation of observed variations in fish catch spanning two orders of magnitude. Our results highlight several ecologically meaningful model sensitivities. First, the latitudinal distribution of the total catch is modulated by the temperature dependence of metabolic rates, with increased sensitivity pushing fish toward the poles. Second, coexistence between forage and large pelagic fish in productive regions occurred when forage fish survival is promoted via both favorable metabolic allometry and enhanced predator avoidance in adult forage fish. Third, the prominence of demersal fish is highly sensitive to the efficiency of energy transfer to benthic invertebrates. Fourth, forage fish biomass is suppressed by strong top-down controls on temperate and subpolar shelves, where mixed assemblages of large pelagic and large demersals exerted high predation rates. Last, spatial differences in the dominance of large pelagics vs. demersals is strongly related to the ratio of pelagic zooplankton production to benthic production. We discuss the potential linkages between model misfits and unresolved processes including movement, spawning phenology, seabird and marine mammal predators, and socioeconomically driven fishing pressure. Ultimately, our model provides a new tool for understanding, quantifying, and predicting global fish biomass and yield, now and in a future dominated by climate change and improved fishing technology.
Original languageEnglish
Article number102124
JournalProgress in Oceanography
Volume176
ISSN0079-6611
DOIs
Publication statusPublished - 2019

Bibliographical note

In press, Progress in Oceanography, doi 10.1016/j.pocean.2019.102124.

Keywords

  • Trophodynamic
  • Allometry
  • Ecosystem
  • Fisheries oceanography
  • Mechanistic model

Cite this

@article{f74ed6461fab4b71a46d71ebb64a6e84,
title = "Bottom-up drivers of global patterns of demersal, forage, and pelagic fishes",
abstract = "Large-scale spatial heterogeneity in fisheries production is predominantly controlled by the availability of zooplankton and benthic organisms, which have a complex relationship with primary production. To investigate how cross-ecosystem differences in these drivers determine fish assemblages and productivity, we constructed a spatially explicit mechanistic model of three fish functional types: forage, large pelagic, and demersal fishes. The model is based on allometric scaling principles, includes basic life cycle transitions, and has trophic interactions between the fishes and with their pelagic and benthic food resources. The model was applied to the global ocean, with plankton food web estimates and ocean conditions from a high-resolution earth system model. Further, a simple representation of fishing was included, and led to moderate matches with total, large pelagic, and demersal catches, including re-creation of observed variations in fish catch spanning two orders of magnitude. Our results highlight several ecologically meaningful model sensitivities. First, the latitudinal distribution of the total catch is modulated by the temperature dependence of metabolic rates, with increased sensitivity pushing fish toward the poles. Second, coexistence between forage and large pelagic fish in productive regions occurred when forage fish survival is promoted via both favorable metabolic allometry and enhanced predator avoidance in adult forage fish. Third, the prominence of demersal fish is highly sensitive to the efficiency of energy transfer to benthic invertebrates. Fourth, forage fish biomass is suppressed by strong top-down controls on temperate and subpolar shelves, where mixed assemblages of large pelagic and large demersals exerted high predation rates. Last, spatial differences in the dominance of large pelagics vs. demersals is strongly related to the ratio of pelagic zooplankton production to benthic production. We discuss the potential linkages between model misfits and unresolved processes including movement, spawning phenology, seabird and marine mammal predators, and socioeconomically driven fishing pressure. Ultimately, our model provides a new tool for understanding, quantifying, and predicting global fish biomass and yield, now and in a future dominated by climate change and improved fishing technology.",
keywords = "Trophodynamic, Allometry, Ecosystem, Fisheries oceanography, Mechanistic model",
author = "Petrik, {Colleen M.} and Stock, {Charles A.} and Andersen, {Ken Haste} and {van Denderen}, {P. Dani{\"e}l} and James Watson",
note = "In press, Progress in Oceanography, doi 10.1016/j.pocean.2019.102124.",
year = "2019",
doi = "10.1016/j.pocean.2019.102124",
language = "English",
volume = "176",
journal = "Progress in Oceanography",
issn = "0079-6611",
publisher = "Pergamon Press",

}

Bottom-up drivers of global patterns of demersal, forage, and pelagic fishes. / Petrik, Colleen M. ; Stock, Charles A.; Andersen, Ken Haste; van Denderen, P. Daniël; Watson, James.

In: Progress in Oceanography, Vol. 176, 102124, 2019.

Research output: Contribution to journalJournal articleResearchpeer-review

TY - JOUR

T1 - Bottom-up drivers of global patterns of demersal, forage, and pelagic fishes

AU - Petrik, Colleen M.

AU - Stock, Charles A.

AU - Andersen, Ken Haste

AU - van Denderen, P. Daniël

AU - Watson, James

N1 - In press, Progress in Oceanography, doi 10.1016/j.pocean.2019.102124.

PY - 2019

Y1 - 2019

N2 - Large-scale spatial heterogeneity in fisheries production is predominantly controlled by the availability of zooplankton and benthic organisms, which have a complex relationship with primary production. To investigate how cross-ecosystem differences in these drivers determine fish assemblages and productivity, we constructed a spatially explicit mechanistic model of three fish functional types: forage, large pelagic, and demersal fishes. The model is based on allometric scaling principles, includes basic life cycle transitions, and has trophic interactions between the fishes and with their pelagic and benthic food resources. The model was applied to the global ocean, with plankton food web estimates and ocean conditions from a high-resolution earth system model. Further, a simple representation of fishing was included, and led to moderate matches with total, large pelagic, and demersal catches, including re-creation of observed variations in fish catch spanning two orders of magnitude. Our results highlight several ecologically meaningful model sensitivities. First, the latitudinal distribution of the total catch is modulated by the temperature dependence of metabolic rates, with increased sensitivity pushing fish toward the poles. Second, coexistence between forage and large pelagic fish in productive regions occurred when forage fish survival is promoted via both favorable metabolic allometry and enhanced predator avoidance in adult forage fish. Third, the prominence of demersal fish is highly sensitive to the efficiency of energy transfer to benthic invertebrates. Fourth, forage fish biomass is suppressed by strong top-down controls on temperate and subpolar shelves, where mixed assemblages of large pelagic and large demersals exerted high predation rates. Last, spatial differences in the dominance of large pelagics vs. demersals is strongly related to the ratio of pelagic zooplankton production to benthic production. We discuss the potential linkages between model misfits and unresolved processes including movement, spawning phenology, seabird and marine mammal predators, and socioeconomically driven fishing pressure. Ultimately, our model provides a new tool for understanding, quantifying, and predicting global fish biomass and yield, now and in a future dominated by climate change and improved fishing technology.

AB - Large-scale spatial heterogeneity in fisheries production is predominantly controlled by the availability of zooplankton and benthic organisms, which have a complex relationship with primary production. To investigate how cross-ecosystem differences in these drivers determine fish assemblages and productivity, we constructed a spatially explicit mechanistic model of three fish functional types: forage, large pelagic, and demersal fishes. The model is based on allometric scaling principles, includes basic life cycle transitions, and has trophic interactions between the fishes and with their pelagic and benthic food resources. The model was applied to the global ocean, with plankton food web estimates and ocean conditions from a high-resolution earth system model. Further, a simple representation of fishing was included, and led to moderate matches with total, large pelagic, and demersal catches, including re-creation of observed variations in fish catch spanning two orders of magnitude. Our results highlight several ecologically meaningful model sensitivities. First, the latitudinal distribution of the total catch is modulated by the temperature dependence of metabolic rates, with increased sensitivity pushing fish toward the poles. Second, coexistence between forage and large pelagic fish in productive regions occurred when forage fish survival is promoted via both favorable metabolic allometry and enhanced predator avoidance in adult forage fish. Third, the prominence of demersal fish is highly sensitive to the efficiency of energy transfer to benthic invertebrates. Fourth, forage fish biomass is suppressed by strong top-down controls on temperate and subpolar shelves, where mixed assemblages of large pelagic and large demersals exerted high predation rates. Last, spatial differences in the dominance of large pelagics vs. demersals is strongly related to the ratio of pelagic zooplankton production to benthic production. We discuss the potential linkages between model misfits and unresolved processes including movement, spawning phenology, seabird and marine mammal predators, and socioeconomically driven fishing pressure. Ultimately, our model provides a new tool for understanding, quantifying, and predicting global fish biomass and yield, now and in a future dominated by climate change and improved fishing technology.

KW - Trophodynamic

KW - Allometry

KW - Ecosystem

KW - Fisheries oceanography

KW - Mechanistic model

U2 - 10.1016/j.pocean.2019.102124

DO - 10.1016/j.pocean.2019.102124

M3 - Journal article

VL - 176

JO - Progress in Oceanography

JF - Progress in Oceanography

SN - 0079-6611

M1 - 102124

ER -