Bond Shortening (1.4 Å) in the Singlet and Triplet Excited States of [Ir2(dimen)4]2+ in Solution Determined by Time-Resolved X-ray Scattering

Research output: Contribution to journalJournal article – Annual report year: 2011Researchpeer-review

View graph of relations

Ground- and excited-state structures of the bimetallic, ligand-bridged compound Ir2(dimen)42+ are investigated in acetonitrile by means of time-resolved X-ray scattering. Following excitation by 2 ps laser pulses at 390 nm, analysis of difference scattering patterns obtained at eight different time delays from 250 ps to 300 ns yields a triplet excited-state distance between the two Ir atoms of 2.90(2) Å and a triplet excited-state lifetime of 410(70) ns. A model incorporating the presence of two ground-state structures differing in Ir–Ir separation is demonstrated to fit the obtained data very well, in agreement with previous spectroscopic investigations. Two ground-state isomers with Ir–Ir separations of 3.60(9) and 4.3(1) Å are found to contribute equally to the difference scattering signal at short time delays. Further studies demonstrate the feasibility of increasing the effective time resolution from the ∼100 ps probe width down to the 10 ps regime by positioning the laser pump pulse at selected points in the X-ray probe pulse. This approach is used to investigate the structures of both the singlet and the triplet excited states of Ir2(dimen)42+.
Original languageEnglish
JournalInorganic Chemistry
Issue number19
Pages (from-to)9329-9336
Publication statusPublished - 2011
CitationsWeb of Science® Times Cited: No match on DOI

    Research areas

  • Materials characterisation and modelling

ID: 5792430