Blue carbon stocks in Baltic Sea eelgrass (Zostera marina) meadows - DTU Orbit (27/09/2019)

Blue carbon stocks in Baltic Sea eelgrass (Zostera marina) meadows

Although seagrasses cover only a minor fraction of the ocean seafloor, their carbon sink capacity accounts for nearly one-fifth of the total oceanic carbon burial and thus play a critical structural and functional role in many coastal ecosystems.

We sampled 10 eelgrass (Zostera marina) meadows in Finland and 10 in Denmark to explore seagrass carbon stocks (C-org stock) and carbon accumulation rates (C-org accumulation) in the Baltic Sea area. The study sites represent a gradient from sheltered to exposed locations in both regions to reflect expected minimum and maximum stocks and accumulation. The C-org stock integrated over the top 25 cm of the sediment averaged 627 g C m(-2) in Finland, while in Denmark the average C-org stock was over 6 times higher (4324 g C m(-2)). A conservative estimate of the total organic carbon pool in the regions ranged between 6.98 and 44.9 t C ha(-1). Our results suggest that the Finnish eelgrass meadows are minor carbon sinks compared to the Danish meadows, and that majority of the C-org produced in the Finnish meadows is exported. Our analysis further showed that >40% of the variation in the C-org stocks was explained by sediment characteristics, i.e. dry density, porosity and silt content. In addition, our analysis show that the root : shoot ratio of Z. marina explained >12% and the contribution of Z. marina detritus to the sediment surface C-org pool explained >10% of the variation in the C-org stocks. The mean monetary value for the present carbon storage and carbon sink capacity of eelgrass meadows in Finland and Denmark, were 281 and 1809 EUR ha(-1), respectively. For a more comprehensive picture of seagrass carbon storage capacity, we conclude that future blue carbon studies should, in a more integrative way, investigate the interactions between sediment biogeochemistry, seascape structure, plant species architecture and the hydrodynamic regime.

General information
Publication status: Published
Organisations: National Institute of Aquatic Resources, Danish Shellfish Centre, Åbo Akademi University, University of Southern Denmark
Contributors: Rohr, M. E., Bostrom, C., Canal-Vergés, P., Holmer, M.
Pages: 6139-6153
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Biogeosciences
Volume: 13
Issue number: 22
ISSN (Print): 1726-4170
Ratings:
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 4.25 SJR 2.397 SNIP 1.328
Web of Science (2016): Impact factor 3.851
Web of Science (2016): Indexed yes
Original language: English
Keywords: ECOLOGY, GEOSCIENCES, SEAGRASS POSIDONIA-OCEANICA, STABLE-ISOTOPE RATIOS, COASTAL SEDIMENTS, ORGANIC-CARBON, SEQUESTRATION CAPACITY, ECOSYSTEMS, ALGAE, DECOMPOSITION, DEGRADATION, VARIABILITY
Electronic versions:
Publishers version
DOIs:
Source: FindIt
Source ID: 2348937186
Research output: Contribution to journal › Journal article – Annual report year: 2016 › Research › peer-review