Black Silicon realized by reactive ion etching (ICP) without platen power - DTU Orbit

Black Silicon realized by reactive ion etching (ICP) without platen power

Reflectance and minority carrier lifetime were measured for black silicon textured by different inductively coupled plasma (ICP) reactive ion etching processes without any capacitively coupled power (platen power). Reflectance was reduced to below 5% after 2 minutes and below 4% after 3 minutes etch time, with several accessible routes to lower reflectance identified. Black silicon wafers were passivated by atomic-layer deposited (ALD) Al₂O₃, and minority carrier lifetime was measured to 2.1 ms for 2 minutes texturing, while minority carrier lifetimes were well below 1.0 ms for etch times in the 5-20 min range. Samples measured immediately after ALD activation, show minority carrier lifetime above 3 ms for RIE process time between 1.5 and 3 min and between 2.5 and 3 ms for etching times above 3 min. These results indicate that ultra-low reflectance and minority carrier lifetime on par with those of the best passivated solar cells to date may be achieved after texturing for just 2 min.

General information
Publication status: Published
Organisations: Department of Micro- and Nanotechnology, Silicon Microtechnology, Technical University of Denmark
Contributors: Davidsen, R. S., Nery, A. P. S., Iandolo, B., Hansen, O.
Number of pages: 4
Publication date: 2018

Host publication information
Title of host publication: 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC)
Publisher: IEEE
ISBN (Electronic): 978-1-5386-8529-7
Keywords: Black silicon, Minority carrier lifetime nanostructures, Reactive ion etching, Reflectance
Electronic versions:
Manuscript_Davidsen_WCPEC_7_updated.pdf
DOIs:
10.1109/PVSC.2018.8548283
Source: PublicationPreSubmission
Source ID: 150478613
Research output: Chapter in Book/Report/Conference proceeding › Article in proceedings – Annual report year: 2018 › Research › peer-review