Bismuth phosphates as intermediate temperature proton conductors: From polycrystalline powders to amorphous glasses

Proton conducting electrolyte materials operational in the intermediate temperature range of 200–400 °C are of special interest for applications in fuel cells and water electrolysers. Bismuth phosphates in forms of polycrystalline powders and amorphous glasses are synthesized and investigated by scanning electron microscopy, X-ray diffraction, FT-IR, thermogravimetric analysis and AC impedance. Under dry atmosphere the pure crystalline and amorphous phosphates exhibit an intrinsic conductivity of up to 10^{-5} S cm$^{-1}$ at 250 °C. In the presence of atmospheric humidity the conductivity of both types of phosphates is significantly enhanced, reaching about 10^{-2} S cm$^{-1}$ at a water vapor partial pressure above 0.5 atm. During a period of more than 100 h with four humidity cycles from zero to 0.58 atm of the water vapor partial pressure, the phosphates show good stability, suggesting the potential as an intermediate temperature electrolyte.

General information
Publication status: Published
Organisations: Department of Energy Conversion and Storage, Proton conductors, China University of Geosciences, Wuhan
Contributors: Huang, Y., Christensen, E., Shuai, Q., Li, Q.
Pages: 7235-7240
Publication date: 2017
Peer-reviewed: Yes

Publication information
Volume: 42
Issue number: 10
ISSN (Print): 0360-3199
Ratings:
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 4.1 SJR 1.116 SNIP 1.292
Web of Science (2017): Impact factor 4.229
Web of Science (2017): Indexed yes
Original language: English
Keywords: Amorphous, Bismuth phosphate, Glass, Intermediate temperature, Polycrystalline, Proton conductor
DOIs: 10.1016/j.ijhydene.2016.04.159
Source: FindIt
Source-ID: 2305874685
Research output: Contribution to journal › Journal article – Annual report year: 2016 › Research › peer-review