Biotechnological hydrogen production by photosynthesis

Jost Weber*, Felix Krujatz, Gerd Hilpmann, Sara Grützner, Jana Herrmann, Simone Thierfelder, Georg Bienert, Rico Illing, Karsten Helbig, Antonio Hurtado, Gianaurelio Cuniberti, Michael Mertig, Rüdiger Lange, Edeltraud Günther, Jörg Opitz, Wolfgang Lippmann, Thomas Bley, Nora Haufe

*Corresponding author for this work

Research output: Contribution to journalReviewpeer-review

374 Downloads (Pure)

Abstract

Microbiological photosynthesis is a promising tool for producing hydrogen in an ecologically friendly and economically efficient way. Certain microorganisms (e.g. algae and bacteria) can produce hydrogen using hydrogenase and/or nitrogenase enzymes. However, their natural capacity to produce hydrogen is relatively low. Thus, there is a need to optimize their core photosynthetic processes as well as their cultivation, for more efficient hydrogen production. This review aims to provide a holistic overview of the recent technological and research developments relating to photobiological hydrogen production and downstream processing. First we cover photobiological hydrogen synthesis within cells and the enzymes that catalyze the hydrogen production. This is followed by strategies for enhancing bacterial hydrogen production by genetic engineering, technological development, and innovation in bioreactor design. The remaining sections focus on hydrogen as a product, that is, quantification via (in-process) gas analysis, recent developments in gas separation technology. Finally, a discussion of the sociological (market) barriers to future hydrogen usage is provided as well as an overview of methods for life cycle assessment that can be used to calculate the environmental consequences of hydrogen production.

Original languageEnglish
JournalEngineering in Life Sciences
Volume14
Issue number6
Pages (from-to)592-606
Number of pages15
ISSN1618-0240
DOIs
Publication statusPublished - 2014
Externally publishedYes

Keywords

  • Genetic engineering
  • Hydrogen purification
  • Life cycle assessment
  • Lighting efficiency
  • Photobioreactor

Fingerprint

Dive into the research topics of 'Biotechnological hydrogen production by photosynthesis'. Together they form a unique fingerprint.

Cite this