Biot Critical Frequency Applied to Description of Failure and Yield of Highly Porous Chalk with Different Pore Fluids

Katrine Alling Andreassen, Ida Lykke Fabricius

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

Injection of water into chalk hydrocarbon reservoirs has led to mechanical yield and failure. Laboratory experiments on chalk samples correspondingly show that the mechanical properties of porous chalk depend on pore fluid and temperature. In case of water-saturated samples, the concentration and nature of dissolved salts have an effect.Water has a significant softening effect on elastic properties of chalk as calculated from wave data, and the softening increases with increasing critical frequency as defined by Biot. The critical frequency is the highest frequency where elastic wave propagation is controlled by solid-fluid friction. The reference frequency is thus a measure of this friction, and we propose that the fluid effect on mechanical properties of chalk may be the result of liquid-solid friction. We reviewed 622 published experiments on mechanical properties of porous chalk. The data include chalk samples that were tested at temperatures from 20 °C to 130 °C with the following pore fluids: fresh water, synthetic seawater, glycol, and oil of varying viscosity. The critical frequency is calculated for each experiment. For each specimen, we calculate the thickness to the slipping plane outside the Stern layer on the pore surface. For electrolytes, the thickness of this layer is calculated based on Debye-Hückel theory. The layer reduces the porosity available for fluid flow.We find that the Biot critical frequency based on pore scale data can be used to explain effects on the macro scale.We find that the effective yield stress and also the effective stress of failure in tension as well as in compression are log-linearly related to log reference frequency. This opens the possibility to predict yield and failure under reservoir conditions from mechanical tests made under laboratory conditions. It also opens the possibility of predicting the effects of water flooding on chalk stability.
Original languageEnglish
JournalGeophysics
Volume75
Issue number6
Pages (from-to)E205-E213
ISSN0016-8033
DOIs
Publication statusE-pub ahead of print - 2010

Fingerprint

Dive into the research topics of 'Biot Critical Frequency Applied to Description of Failure and Yield of Highly Porous Chalk with Different Pore Fluids'. Together they form a unique fingerprint.

Cite this