Bioremediation capacity, nutritional value and biorefining of macroalga Saccharina latissima

Macroalgae have the ability to assimilate and convert waste nutrients (N and P) into valuable biomass. In this context, they have been extensively studied for their bioremediation potential for integrated multi-trophic aquaculture (IMTA). With a global aquaculture production of 23.8 million tonnes in 2012, macroalgae are a valuable source of vitamins, minerals, lipids, protein, and dietary fibres. Macroalgae have been used as food since ancient times in Asian countries, while in Europe they have later been introduced as healthy food. Moreover, recently macroalgae have been receiving increasing attention as sustainable feedstock for biorefinery. Nevertheless, macroalgal resources are still very little explored in western countries. The aim of this study was fulfilled by the investigation of the bioremediation potential of the macroalga Saccharina latissima cultivated at a reference site (control) and at an IMTA site during 12 months (May 2013-May 2014), and assessing the effect of cultivation site and harvest time. Moreover, a comprehensive chemical and nutritional characterization of the produced biomass was made, and its potential as food and/or feed discussed. Finally S. latissima biomass was tested as feedstock for fermentation-based succinic acid production in a biorefinery approach. Maximum biomass yield over one growing season was achieved in August (1.08-1.51 kg fresh weight (FW) m-1 of cultivation line) and September (0.92-1.49 kg FW m-1). Biomass yield directly correlated with the nutrient removal which similarly peaked in August (5.02-7.02 g N m-1 and 0.86-1.23 g P m-1) and September (4.73-7.24 g N m-1 and 0.83-0.96 g P m-1). Moreover, both biomass yield and nutrient removal were higher in the IMTA site compared to the reference site in August (p<0.05). Additionally, macroalgae cultivation over two growing seasons enhanced the biomass yield and thus value, but not the bioremediation capacity. Harvest time had a significant impact in overall chemical composition, while cultivation site did not generally result in marked differences. The growth of epiphytic organisms from July to November makes the biomass unsuitable for human consumption, thus biomass meant to be used as food should be harvested in May. Protein content increased significantly from 1.3% dry matter (DM) in May to 10.8% DM in November. Similarly, the maximum essential amino acid (EAA) score was found in November (68.9%). Thus, results suggest an apparent mismatch between harvest time for human consumption (May) and the highest nutritional value of the protein in the biomass (November). The growth of epiphytes did not change the amino acid content or EAA score. However, the protein content and composition did not comply with the requirements for standard protein ingredients for fish feed (i.e. fishmeal, soymeal). The lipid concentration varied from 0.62%–0.88% DM in July to 3.33%–3.35% DM in November (p<0.05). Polysaturated fatty acids (PUFA’s) made up more than half of the fatty acids with a maximum in July (52.3%–54.0% fatty acid methyl esters). This including the most appreciated health beneficial PUFA’s, eicosapentaenoic (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3), but also arachidonic (ARA) and stearidonic acid (SDA). Season of harvest is important for the choice of lipid quantity and quality, but the macroalga provides better sources of EPA, DHA and long-chain (LC)-PUFA’s in general compared to traditional vegetables. Regarding safety regulations, however, the main conclusions on the mineral analyses showed that high concentrations of iodine (up to 5,001 mg kg-1 DM) in the biomass may be of concern for human consumption, while the concentrations of total arsenic (up to 63.3 mg kg-1 DM) may restrict utilization as ingredient for feed. Seasonal variations in the content of carbohydrates, and fermentable sugars, had a significant impact on the succinic acid yield and titer. A maximum succinic acid yield of 91.9% (g g-1 of total sugars) corresponding to 70.5% of the theoretical maximum yield was achieved; while succinic acid titer amounted up to 36.8 g L-1 with maximum productivity of 3.9 g L-1 h-1. The high content of total phenolic compounds in the macroalga (July-August: 5-1% DM), and high concentration of inorganic nutrients in the solid residue recovered after enzymatic hydrolysis, makes co-production of antioxidants (i.e. phenols) and fertilizer very attractive. This was demonstrated to have the potential to increase the cost-effectiveness of the biorefinery facility. This study gives comprehensive information of the bioremediation potential of S. latissima cultivated commercially in the inner Danish waters. Year-round data show that harvest time can be effectively used to optimize the bioremediation capacity, and the biomass yield and application/value. The macroalga can be a source of valuable proteins, specific amino acids and food; however, high concentrations of iodine and total arsenic may be of concern regarding food and feed safety regulations, respectively. On the other hand, S. latissima is a promising feedstock for fermentation-based succinic acid production with co-production of phenols, and fertilizers.