Biomanipulating streams - DTU Orbit (19/08/2019)

Biomanipulating streams: a supplementary tool in lake restoration

Removal of cyprinid fish is a widely used biomanipulation tool to transform turbid shallow eutrophic lakes in north temperate regions into a clear water state. We here evaluate the removal of cyprinids from streams as a supplement to lake fishing. Since cyprinids often aggregate in high densities in lake inlet/outlet streams during winter migration, removal of fish in this space-confined habitat may be cost-efficient as compared to fish removal in the lake habitat. In two consecutive years, we annually removed up to 35% of the dominant cyprinids from an inlet stream to a lake and argue that this could easily be increased with a more targeted fishing effort. Concurrently, we monitored species- and length-specific variation in migration propensity, to explore how this relates to efficient fish removal. Smaller planktivores generally had a much higher migratory propensity than larger benthivores. Hence, stream fishing specifically targets species and size groups that are less efficiently controlled with traditional lake fishing methods. As a rule of thumb, stream fishing is most efficient when water temperature is 2–6°C. Prior to implementing fish removals from streams, the potential evolutionary consequences of the targeted removal of migratory phenotypes should be considered.

General information
Publication status: Published
Organisations: National Institute of Aquatic Resources, Section for Freshwater Fisheries Ecology, Swiss Federal Institute of Aquatic Science and Technology, University of Bern, Lund University, University of Manchester, Karlstad University
Corresponding author: Skov, C.
Pages: 205-216
Publication date: 1 Jan 2019
Peer-reviewed: Yes

Publication information
Journal: Hydrobiologia
Volume: 829
ISSN (Print): 0018-8158
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
Original language: English
Keywords: Cost-effective, Cyprinid fishes, Evolutionary consequences, Fish removal, Migration
DOIs:
10.1007/s10750-018-3832-4
Source: Scopus
Source-ID: 85057100636
Research output: Contribution to journal › Journal article – Annual report year: 2019 › Research › peer-review