Bioinspired microstructured polymer surfaces with antireflective properties

Alexandre Emmanuel Wetzel, Nuria Del Castillo Iniesta, Einstom Engay, Nikolaj Kofoed Mandsberg, Celine Schou Dinesen, Bilal Rashid Hanif, Kirstine Berg-Sørensen, Ada Ioana Bunea*, Rafael Taboryski

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

78 Downloads (Pure)


Over the years, different approaches to obtaining antireflective surfaces have been explored, such as using index-matching, interference, or micro-and nanostructures. Structural super black colors are ubiquitous in nature, and biomimicry thus constitutes an interesting way to develop antireflective surfaces. Moth-eye nanostructures, for example, are well known and have been successfully replicated using micro-and nanofabrication. However, other animal species, such as birds of paradise and peacock spiders, have evolved to display larger structures with antireflective features. In peacock spiders, the antireflective properties of their super black patches arise from relatively simple microstructures with lens-like shapes organized in tightly packed hexagonal arrays, which makes them a good candidate for cheap mass replication techniques. In this paper, we present the fabrication and characterization of antireflective microarrays inspired by the peacock spider’s super black structures encountered in nature. Firstly, different microarrays 3D models are generated from a surface equation. Secondly, the arrays are fabricated in a polyacrylate resin by super-resolution 3D printing using two-photon polymerization. Thirdly, the resulting structures are inspected using a scanning electron microscope. Finally, the reflectance and transmittance of the printed structures are characterized at normal incidence with a dedicated optical setup. The bioinspired microlens arrays display excellent antireflective properties, with a measured reflectance as low as 0.042 ± 0.004% for normal incidence, a wavelength of 550 nm, and a collection angle of 14.5°. These values were obtained using a tightly-packed array of slightly pyramidal lenses with a radius of 5 µm and a height of 10 µm.

Original languageEnglish
Article number2298
Issue number9
Number of pages11
Publication statusPublished - 2021

Bibliographical note

Funding Information:
The authors acknowledge financial support from the Novo Nordisk Foundation (grant number NNF16OC0021948) and VILLUM FONDEN (grant numbers 00022918 and 34424).


  • 3D printing
  • Antireflective
  • Biomimetic
  • Polymer microstructures
  • Super black
  • Two-pho-ton polymerization


Dive into the research topics of 'Bioinspired microstructured polymer surfaces with antireflective properties'. Together they form a unique fingerprint.

Cite this