Bioenergetics modelling of growth processes in parasitized Eastern Baltic cod (Gadus morhua L.)

Marie Plambech Ryberg, Asbjørn Christensen, Christian Jørgensen, Stefan Neuenfeldt, Peter V. Skov, Jane W. Behrens*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

95 Downloads (Pure)

Abstract

Changes in physiological processes can reveal how individuals respond to environmental stressors. It can be difficult to link physiological responses to changes in vital rates such as growth, reproduction and survival. Here, bioenergetics modelling can aid in understanding non-intuitive outcomes from stressor combinations. Building on an established bioenergetics model, we examine the potential effects of parasite infection on growth rate and body condition. Parasites represent an overlooked biotic factor, despite their known effects on the physiology of the host organism. As a case study, we use the host–parasite system of Eastern Baltic cod (Gadus morhua) infected with the parasitic nematode Contraceacum osculatum. Eastern Baltic cod have during the past decade experienced increasing infection loads with C. osculatum that have been shown to lead to physiological changes. We hypothesized that infection with parasites affects cod growth negatively as previous studies reveal that the infections lead to reduced energy turnover, severe liver disease and reduced nutritional condition. To test this, we implemented new variables into the bioenergetics model representing the physiological changes in infected fish and parameterized these based on previous experimental data. We found that growth rate and body condition decreased with increased infection load. Highly infected cod reach a point of no return where their energy intake cannot maintain a surplus energy balance, which may eventually lead to induced mortality. In conclusion, parasite infections cannot be ignored when assessing drivers of fish stock dynamics.
Original languageEnglish
Article numbercoad007
JournalConservation Physiology
Volume11
Issue number1
Number of pages13
ISSN2051-1434
DOIs
Publication statusPublished - 2023

Fingerprint

Dive into the research topics of 'Bioenergetics modelling of growth processes in parasitized Eastern Baltic cod (Gadus morhua L.)'. Together they form a unique fingerprint.

Cite this